Download Free The Mechanics Of The Circulation Book in PDF and EPUB Free Download. You can read online The Mechanics Of The Circulation and write the review.

This classic book outlines the anatomy and physiology of the circulation and explains the mechanical principles that govern it.
"Continuing demand for this book confirms that it remains relevant over 30 years after its first publication. The fundamental explanations are largely unchanged, but in the new introduction to this second edition the authors are on hand to guide the reader through major advances of the last three decades. With an emphasis on physical explanation rather than equations, Part I clearly presents the background mechanics. The second part applies mechanical reasoning to the component parts of the circulation: blood, the heart, the systemic arteries, microcirculation, veins and the pulmonary circulation. Each section demonstrates how an understanding of basic mechanics enhances our understanding of the function of the circulation as a whole. This classic book is of value to students, researchers and practitioners in bioengineering, physiology and human and veterinary medicine, particularly those working in the cardiovascular field, and to engineers and physical scientists with multidisciplinary interests"--
"Continuing demand for this book confirms that it remains relevant over 30 years after its first publication. The fundamental explanations are largely unchanged, but in the new introduction to this second edition the authors are on hand to guide the reader through major advances of the last three decades. With an emphasis on physical explanation rather than equations, Part I clearly presents the background mechanics. The second part applies mechanical reasoning to the component parts of the circulation: blood, the heart, the systemic arteries, microcirculation, veins and the pulmonary circulation. Each section demonstrates how an understanding of basic mechanics enhances our understanding of the function of the circulation as a whole. This classic book is of value to students, researchers and practitioners in bioengineering, physiology and human and veterinary medicine, particularly those working in the cardiovascular field, and to engineers and physical scientists with multidisciplinary interests"--
Continuing demand for this book confirms that it remains relevant over 30 years after its first publication. The fundamental explanations are largely unchanged, but in the new introduction to this second edition the authors are on hand to guide the reader through major advances of the last three decades. With an emphasis on physical explanation rather than equations, Part I clearly presents the background mechanics. The second part applies mechanical reasoning to the component parts of the circulation: blood, the heart, the systemic arteries, microcirculation, veins and the pulmonary circulation. Each section demonstrates how an understanding of basic mechanics enhances our understanding of the function of the circulation as a whole. This classic book is of value to students, researchers and practitioners in bioengineering, physiology and human and veterinary medicine, particularly those working in the cardiovascular field, and to engineers and physical scientists with multidisciplinary interests. (A cura dell'editore).
The analysis of the circulation of the blood is one of the most important areas of fluid mechanics research, with far-reaching medical and physiological implications.
A presentation of the most elementary form of pulsatile flow as an important prerequisite for the study of other flow applications in biological systems. The book provides in a single source a complete treatment of the fluid dynamics of flow with the required mathematics and emphasis on the basis mechanics. The style and level of this book make it accessible to students and researchers in biophysics, biology, medicine, bioengineering and applied mathematics working in theoretical and clinical work on the cardiovascular system, as well as in the design of new instrumentation, medical imaging systems, and artificial organs. With problems and exercises.
Both broad and deep in coverage, Rubenstein shows that fluid mechanics principles can be applied not only to blood circulation, but also to air flow through the lungs, joint lubrication, intraocular fluid movement and renal transport. Each section initiates discussion with governing equations, derives the state equations and then shows examples of their usage. Clinical applications, extensive worked examples, and numerous end of chapter problems clearly show the applications of fluid mechanics to biomedical engineering situations. A section on experimental techniques provides a springboard for future research efforts in the subject area. Uses language and math that is appropriate and conducive for undergraduate learning, containing many worked examples and end of chapter problems All engineering concepts and equations are developed within a biological context Covers topics in the traditional biofluids curriculum, as well as addressing other systems in the body that can be described by biofluid mechanics principles, such as air flow through the lungs, joint lubrication, intraocular fluid movement, and renal transport Clinical applications are discussed throughout the book, providing practical applications for the concepts discussed.
Designed for senior undergraduate or first-year graduate students in biomedical engineering, Biofluid Mechanics: The Human Circulation, Second Edition teaches students how fluid mechanics is applied to the study of the human circulatory system. Reflecting changes in the field since the publication of its predecessor, this second edition has been extensively revised and updated. New to the Second Edition Improved figures and additional examples More problems at the end of each chapter A chapter on the computational fluid dynamic analysis of the human circulation, which reflects the rapidly increasing use of computational simulations in research and clinical arenas Drawing on each author’s experience teaching courses on cardiovascular fluid mechanics, the book begins with introductory material on fluid and solid mechanics as well as a review of cardiovascular physiology pertinent to the topics covered in subsequent chapters. The authors then discuss fluid mechanics in the human circulation, primarily applied to blood flow at the arterial level. They also cover vascular implants and measurements in the cardiovascular system.
Designed for senior undergraduate or first-year graduate students in biomedical engineering, Biofluid Mechanics: The Human Circulation, Second Edition teaches students how fluid mechanics is applied to the study of the human circulatory system. Reflecting changes in the field since the publication of its predecessor, this second edition has been ex
This book provides a guiding thread between the distant fields of fluid mechanics and clinical cardiology. Well rooted in the science of fluid dynamics, it drives the reader across progressively more realistic scenarios up to the complexity of routine medical applications. Based on the author’s 25 years of collaborations with cardiologists, it helps engineers learn communicating with clinicians, yet maintaining the rigor of scientific disciplines. This book starts with a description of the fundamental elements of fluid dynamics in large blood vessels. This is achieved by introducing a rigorous physical background accompanied by examples applied to the circulation, and by presenting classic and recent results related to the application of fluid dynamics to the cardiovascular physiology. It then explores more advanced topics for a physics-based understanding of phenomena effectively encountered in clinical cardiology. It stands as an ideal learning resource for physicists and engineers working in cardiovascular fluid dynamics, industry engineers working on biomedical/cardiovascular technology, and students in bio-fluid dynamics. Written with a concise style, this textbook is accessible to a broad readership, including students, physical scientists and engineers, offering an entry point into this multi-disciplinary field. It includes key concepts exemplified by illustrations using cutting-edge imaging, references to modelling and measurement technologies, and includes unique original insights.