Download Free The Mechanics And Thermodynamics Of Continua Book in PDF and EPUB Free Download. You can read online The Mechanics And Thermodynamics Of Continua and write the review.

The Mechanics and Thermodynamics of Continua presents a unified treatment of continuum mechanics and thermodynamics that emphasises the universal status of the basic balances and the entropy imbalance. These laws are viewed as fundamental building blocks on which to frame theories of material behaviour. As a valuable reference source, this book presents a detailed and complete treatment of continuum mechanics and thermodynamics for graduates and advanced undergraduates in engineering, physics and mathematics. The chapters on plasticity discuss the standard isotropic theories and, in addition, crystal plasticity and gradient plasticity.
This title proposes a unified approach to continuum mechanics which is consistent with Galilean relativity. Based on the notion of affine tensors, a simple generalization of the classical tensors, this approach allows gathering the usual mechanical entities — mass, energy, force, moment, stresses, linear and angular momentum — in a single tensor. Starting with the basic subjects, and continuing through to the most advanced topics, the authors' presentation is progressive, inductive and bottom-up. They begin with the concept of an affine tensor, a natural extension of the classical tensors. The simplest types of affine tensors are the points of an affine space and the affine functions on this space, but there are more complex ones which are relevant for mechanics − torsors and momenta. The essential point is to derive the balance equations of a continuum from a unique principle which claims that these tensors are affine-divergence free.
From the reviews: "The book is excellent, and covers a very broad area (usually treated as separate topics) from a unified perspective. [...] It will be very useful for both mathematicians and physicists." EMS Newsletter
Treats subjects directly related to nonlinear materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.
The notion of continuum thermodynamics, adopted in this book, is primarily understood as a strategy for development of continuous models of various physical systems. The examples of such a strategy presented in the book have both the classical character (e. g. thermoelastic materials, viscous fluids, mixtures) and the extended one (ideal gases, Maxwellian fluids, thermoviscoelastic solids etc. ). The latter has been limited intentionally to non-relativistic models; many important relativistic applications of the true extended thermodynamics will not be considered but can be found in the other sources. The notion of extended thermodynamics is also adopted in a less strict sense than suggested by the founders. For instance, in some cases we allow the constitutive dependence not only on the fields themselves but also on some derivatives. In this way, the new thermodynamical models may have some features of the usual nonequilibrium models and some of those of the extended models. This deviation from the strategy of extended thermodynamics is motivated by practical aspects; frequently the technical considerations of extended thermodynamics are so involved that one can no longer see important physical properties of the systems. This book has a different form from that usually found in books on continuum mechanics and continuum thermodynamics. The presentation of the formal structure of continuum thermodynamics is not always as rigorous as a mathematician might anticipate and the choice of physical subjects is too disperse to make a physicist happy.
This text is intended to provide a modern and integrated treatment of the foundations and applications of continuum mechanics. There is a significant increase in interest in continuum mechanics because of its relevance to microscale phenomena. In addition to being tailored for advanced undergraduate students and including numerous examples and exercises, this text also features a chapter on continuum thermodynamics, including entropy production in Newtonian viscous fluid flow and thermoelasticity. Computer solutions and examples are emphasized through the use of the symbolic mathematical computing program Mathematica®.
The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.
This introductory graduate text is a unified treatment of the major concepts of Solid Mechanics for beginning graduate students in the many branches of engineering. Major topics are elasticity, viscoelasticity, plasticity, fracture, and fatigue. The book also has chapters on thermoelasticity, chemoelasticity, poroelasticity and piezoelectricity.
This book provides physical and mathematical foundation as well as complete derivation of the mathematical descriptions and constitutive theories for deformation of solid and fluent continua, both compressible and incompressible with clear distinction between Lagrangian and Eulerian descriptions as well as co- and contra-variant bases. Definitions of co- and contra-variant tensors and tensor calculus are introduced using curvilinear frame and then specialized for Cartesian frame. Both Galilean and non-Galilean coordinate transformations are presented and used in establishing objective tensors and objective rates. Convected time derivatives are derived using the conventional approach as well as non-Galilean transformation and their significance is illustrated in finite deformation of solid continua as well as in the case of fluent continua. Constitutive theories are derived using entropy inequality and representation theorem. Decomposition of total deformation for solid and fluent continua into volumetric and distortional deformation is essential in providing a sound, general and rigorous framework for deriving constitutive theories. Energy methods and the principle of virtual work are demonstrated to be a small isolated subset of the calculus of variations. Differential form of the mathematical models and calculus of variations preclude energy methods and the principle of virtual work. The material in this book is developed from fundamental concepts at very basic level with gradual progression to advanced topics. This book contains core scientific knowledge associated with mathematical concepts and theories for deforming continuous matter to prepare graduate students for fundamental and basic research in engineering and sciences. The book presents detailed and consistent derivations with clarity and is ideal for self-study.
Ian Murdoch's Physical Foundations of Continuum Mechanics will interest engineers, mathematicians, and physicists who study the macroscopic behaviour of solids and fluids or engage in molecular dynamical simulations. In contrast to standard works on the subject, Murdoch's book examines physical assumptions implicit in continuum modelling from a molecular perspective. In so doing, physical interpretations of concepts and fields are clarified by emphasising both their microscopic origin and sensitivity to scales of length and time. Murdoch expertly applies this approach to theories of mixtures, generalised continua, fluid flow through porous media, and systems whose molecular content changes with time. Elements of statistical mechanics are included, for comparison, and two extensive appendices address relevant mathematical concepts and results. This unique and thorough work is an authoritative reference for both students and experts in the field.