Download Free The Mean Convergence Of Orthogonal Series Book in PDF and EPUB Free Download. You can read online The Mean Convergence Of Orthogonal Series and write the review.

Convergence Problems of Orthogonal Series deals with the theory of convergence and summation of the general orthogonal series in relation to the general theory and classical expansions. The book reviews orthogonality, orthogonalization, series of orthogonal functions, complete orthogonal systems, and the Riesz-Fisher theorem. The text examines Jacobi polynomials, Haar's orthogonal system, and relations to the theory of probability using Rademacher's and Walsh's orthogonal systems. The book also investigates the convergence behavior of orthogonal series by methods belonging to the general theory of series. The text explains some Tauberian theorems and the classical Abel transform of the partial sums of a series which the investigator can use in the theory of orthogonal series. The book examines the importance of the Lebesgue functions for convergence problems, the generalization of the Walsh series, the order of magnitude of the Lebesgue functions, and the Lebesgue functions of the Cesaro summation. The text also deals with classical convergence problems in which general orthogonal series have limited significance as orthogonal expansions react upon the structural properties of the expanded function. This reaction happens under special assumptions concerning the orthogonal system in whose functions the expansion proceeds. The book can prove beneficial to mathematicians, students, or professor of calculus and advanced mathematics.
The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.
This volume presents the proceedings of the Summer Research Conference on q-series and related topics held at Mount Holyoke College (Hadley, Massachusetts). All of the papers were contributed by participants and offer original research. Articles in the book reflect the diversity of areas that overlap with q-series, as well as the usefulness of q-series across the mathematical sciences. The conference was held in honour of Richard Askey on the occasion of his 65th birthday.
Presenting the proceedings from the Second Conference on Function Spaces, this work details known results and fresh discoveries on a wide range of topics concerning function spaces. It covers advances in areas such as spaces and algebras of analytic functions, Lp-spaces, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces, and Banach algebras.
This book presents a systematic coarse on general orthogonal polynomials and Fourie series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis. Chapter 2 contains the classical results about the orthogonal polynomials (some properties, classical Jacobi polynomials and the criteria of boundedness). The main subject of the book is Fourier series in general orthogonal polynomials. Chapters 3 and 4 are devoted to some results in this topic (classical results about convergence and summability of Fourier series in L(2)micro; summability almost everywhere by the Cesaro means and the Poisson-Abel method for Fourier polynomial series are the subject of Chapters 4 and 5). The last chapter contains some estimates regarding the generalized shift operator and the generalized product formula, associated with general orthogonal polynomials. The starting point of the technique in Chapters 4 and 5 is the representations of bilinear and trilinear forms obtained by the author. The results obtained in these two chapters are new ones. Chapters 2 and 3 (and part of Chapter 1) will be useful to postgraduate students, and one can choose them for treatment. This book is intended for researchers (mathematicians and physicists) whose work involves function theory, functional analysis, harmonic analysis and approximation theory.
Assuming no further prerequisites than a first undergraduate course in real analysis, this concise introduction covers general elementary theory related to orthogonal polynomials. It includes necessary background material of the type not usually found in the standard mathematics curriculum. Suitable for advanced undergraduate and graduate courses, it is also appropriate for independent study. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some specific systems of orthogonal polynomials. Numerous examples and exercises, an extensive bibliography, and a table of recurrence formulas supplement the text.
"Investigate various forms of convergence of Fourier series in general orthonormal systems as well as certain problems in the theory of bases" -- Introduction.