Download Free The Matrix In Theory Book in PDF and EPUB Free Download. You can read online The Matrix In Theory and write the review.

The Matrix trilogy continues to split opinions widely, polarising the downright dismissive and the wildly enthusiastic. Nevertheless, it has been fully embraced as a rich source of theoretical and cultural references. The contributions in this volume probe the effects the Matrix trilogy continues to provoke and evaluate how or to what extent they coincide with certain developments within critical and cultural theory. Is the enthusiastic philosophising and theorising spurred by the Matrix a sign of the desperate state theory is in, in the sense of “see how low theory (or ‘post-theory’) has sunk”? Or could the Matrix be one of the “master texts” for something like a renewal for theory as now being mainly concerned with new and changing relations between science, technology, posthumanist culture, art, politics, ethics and the media? The present volume is unashamedly but not dogmatically theoretical even though there is not much agreement about what kind of theory is best suited to confront “post-theoretical” times. But it is probably fair to say that there is agreement about one thing, namely that if theory appears to be “like” the Matrix today it does so because the culture around it and which “made” it itself seems to be captured in some kind of Matrix. The only way out of this is through more and renewed, refreshed theorising, not less.
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
This book provides an introduction to matrix theory and aims to provide a clear and concise exposition of the basic ideas, results and techniques in the subject. Complete proofs are given, and no knowledge beyond high school mathematics is necessary. The book includes many examples, applications and exercises for the reader, so that it can used both by students interested in theory and those who are mainly interested in learning the techniques.
Concise, masterly survey of a substantial part of modern matrix theory introduces broad range of ideas involving both matrix theory and matrix inequalities. Also, convexity and matrices, localization of characteristic roots, proofs of classical theorems and results in contemporary research literature, more. Undergraduate-level. 1969 edition. Bibliography.
This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.
This guide to using matrices as a mathematical tool offers a model for procedure rather than an exposition of theory. Detailed examples illustrate the focus on computational methods. 1962 edition.
In 1990, the National Science Foundation recommended that every college mathematics curriculum should include a second course in linear algebra. In answer to this recommendation, Matrix Theory: From Generalized Inverses to Jordan Form provides the material for a second semester of linear algebra that probes introductory linear algebra concepts while also exploring topics not typically covered in a sophomore-level class. Tailoring the material to advanced undergraduate and beginning graduate students, the authors offer instructors flexibility in choosing topics from the book. The text first focuses on the central problem of linear algebra: solving systems of linear equations. It then discusses LU factorization, derives Sylvester's rank formula, introduces full-rank factorization, and describes generalized inverses. After discussions on norms, QR factorization, and orthogonality, the authors prove the important spectral theorem. They also highlight the primary decomposition theorem, Schur's triangularization theorem, singular value decomposition, and the Jordan canonical form theorem. The book concludes with a chapter on multilinear algebra. With this classroom-tested text students can delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.
Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.