Download Free The Mathematical Heritage Of Hermann Weyl Book in PDF and EPUB Free Download. You can read online The Mathematical Heritage Of Hermann Weyl and write the review.

Hermann Weyl was one of the most influential mathematicians of the twentieth century. Viewing mathematics as an organic whole rather than a collection of separate subjects, Weyl made profound contributions to a wide range of areas, including analysis, geometry, number theory, Lie groups, and mathematical physics, as well as the philosophy of science and of mathematics. The topics he chose to study, the lines of thought he initiated, and his general perspective on mathematics have proved remarkably fruitful and have formed the basis for some of the best of modern mathematical research. This volume contains the proceedings of the AMS Symposium on the Mathematical Heritage of Hermann Weyl, held in May 1987 at Duke University. In addition to honoring Weyl's great accomplishments in mathematics, the symposium also sought to stimulate the younger generation of mathematicians by highlighting the cohesive nature of modern mathematics as seen from Weyl's ideas. The symposium assembled a brilliant array of speakers and covered a wide range of topics. All of the papers are expository and will appeal to a broad audience of mathematicians, theoretical physicists, and other scientists.
Hermann Weyl was one of the most influential mathematicians of the twentieth century. Viewing mathematics as an organic whole rather than a collection of separate subjects, Weyl made profound contributions to a wide range of areas, including analysis, geometry, number theory, Lie groups, and mathematical physics, as well as the philosophy of science and of mathematics. The topics he chose to study, the lines of thought he initiated, and his general perspective on mathematics have proved remarkably fruitful and have formed the basis for some of the best of modern mathematical research. This volume contains the proceedings of the AMS Symposium on the Mathematical Heritage of Hermann Weyl, held in May 1987 at Duke University. In addition to honoring Weyl's great accomplishments in mathematics, the symposium also sought to stimulate the younger generation of mathematicians by highlighting the cohesive nature of modern mathematics as seen from Weyl's ideas. The symposium assembled a brilliant array of speakers and covered a wide range of topics. All of the papers are expository and will appeal to a broad audience of mathematicians, theoretical physicists, and other scientists.
Published for the Eidgenössische Technische Hochschule Zürich
History of mathematics.
A new study of the mathematical-physical mode of cognition.
This landmark among mathematics texts applies group theory to quantum mechanics, first covering unitary geometry, quantum theory, groups and their representations, then applications themselves — rotation, Lorentz, permutation groups, symmetric permutation groups, and the algebra of symmetric transformations.
'Motives' were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, and to play the role of the missing rational cohomology. This work contains the texts of the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991.
A History of Mathematics: From Mesopotamia to Modernity covers the evolution of mathematics through time and across the major Eastern and Western civilizations. It begins in Babylon, then describes the trials and tribulations of the Greek mathematicians. The important, and often neglected, influence of both Chinese and Islamic mathematics is covered in detail, placing the description of early Western mathematics in a global context. The book concludes with modern mathematics, covering recent developments such as the advent of the computer, chaos theory, topology, mathematical physics, and the solution of Fermat's Last Theorem. Containing more than 100 illustrations and figures, this text, aimed at advanced undergraduates and postgraduates, addresses the methods and challenges associated with studying the history of mathematics. The reader is introduced to the leading figures in the history of mathematics (including Archimedes, Ptolemy, Qin Jiushao, al-Kashi, al-Khwarizmi, Galileo, Newton, Leibniz, Helmholtz, Hilbert, Alan Turing, and Andrew Wiles) and their fields. An extensive bibliography with cross-references to key texts will provide invaluable resource to students and exercises (with solutions) will stretch the more advanced reader.