Download Free The Material Gene Book in PDF and EPUB Free Download. You can read online The Material Gene and write the review.

In 2000, the National Human Genome Research Institute announced the completion of a “draft” of the human genome, the sequence information of nearly all 3 billion base pairs of DNA. In the wake of this major scientific accomplishment, the focus on the genetic basis of disease has sparked many controversies as questions are raised about radical preventative therapies, the role of race in research, and the environmental origins of illness. In The Material Gene, Kelly Happe explores the cultural and social dimensions of our understandings of genomics, using this emerging field to examine the physical manifestation of social relations. Situating contemporary genomics medicine and public health within a wider history of eugenics, Happe examines how the relationship between heredity and dominant social and economic interests has shifted along with transformations in gender and racial politics, social movement, and political economy. Happe demonstrates that genomics is a type of social knowledge, relying on cultural values to attach meaning to the body. The Material Gene situates contemporary genomics within a history of genetics research yet is attentive to the new ways in which knowledge claims about heredity, race, and gender emerge and are articulated to present-day social and political agendas. Kelly E. Happe is assistant professor of communication studies and women’s studies at the University of Georgia.
Basic Genetics is a concise introductory textbook that focuses not only on understanding and explaining the main points of genetics, but also upon covering the required essential traditional subjects in the field. The main goal of this textbook is to help first year students who are taking their first course in human genetics to understand the different topics within genetics. It is of particular interest for those who are preparing themselves to study medicine or other medical sciences. This textbook presents only the essential required information. Some of the different subjects included in the eight chapters are: cell cycle and cellular division, Mendelian principles of heredity, the molecular basis of genetic material, gene expression and gene expression control, genetic variations and genetic engineering, as well as human genetics. In addition, Basic Genetics contains multiple choice questions covering each topic and their answers. These questions are absolutely essential for students' self- assessment. These different topics of basic genetics have also been illustrated by simple diagrams in full color.
The #1 NEW YORK TIMES Bestseller The basis for the PBS Ken Burns Documentary The Gene: An Intimate History Now includes an excerpt from Siddhartha Mukherjee’s new book Song of the Cell! From the Pulitzer Prize–winning author of The Emperor of All Maladies—a fascinating history of the gene and “a magisterial account of how human minds have laboriously, ingeniously picked apart what makes us tick” (Elle). “Sid Mukherjee has the uncanny ability to bring together science, history, and the future in a way that is understandable and riveting, guiding us through both time and the mystery of life itself.” —Ken Burns “Dr. Siddhartha Mukherjee dazzled readers with his Pulitzer Prize-winning The Emperor of All Maladies in 2010. That achievement was evidently just a warm-up for his virtuoso performance in The Gene: An Intimate History, in which he braids science, history, and memoir into an epic with all the range and biblical thunder of Paradise Lost” (The New York Times). In this biography Mukherjee brings to life the quest to understand human heredity and its surprising influence on our lives, personalities, identities, fates, and choices. “Mukherjee expresses abstract intellectual ideas through emotional stories…[and] swaddles his medical rigor with rhapsodic tenderness, surprising vulnerability, and occasional flashes of pure poetry” (The Washington Post). Throughout, the story of Mukherjee’s own family—with its tragic and bewildering history of mental illness—reminds us of the questions that hang over our ability to translate the science of genetics from the laboratory to the real world. In riveting and dramatic prose, he describes the centuries of research and experimentation—from Aristotle and Pythagoras to Mendel and Darwin, from Boveri and Morgan to Crick, Watson and Franklin, all the way through the revolutionary twenty-first century innovators who mapped the human genome. “A fascinating and often sobering history of how humans came to understand the roles of genes in making us who we are—and what our manipulation of those genes might mean for our future” (Milwaukee Journal-Sentinel), The Gene is the revelatory and magisterial history of a scientific idea coming to life, the most crucial science of our time, intimately explained by a master. “The Gene is a book we all should read” (USA TODAY).
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
In a book that promises to change the way we think and talk about genes and genetic determinism, Evelyn Fox Keller, one of our most gifted historians and philosophers of science, provides a powerful, profound analysis of the achievements of genetics and molecular biology in the twentieth century, the century of the gene. Not just a chronicle of biology’s progress from gene to genome in one hundred years, The Century of the Gene also calls our attention to the surprising ways these advances challenge the familiar picture of the gene most of us still entertain. Keller shows us that the very successes that have stirred our imagination have also radically undermined the primacy of the gene—word and object—as the core explanatory concept of heredity and development. She argues that we need a new vocabulary that includes concepts such as robustness, fidelity, and evolvability. But more than a new vocabulary, a new awareness is absolutely crucial: that understanding the components of a system (be they individual genes, proteins, or even molecules) may tell us little about the interactions among these components. With the Human Genome Project nearing its first and most publicized goal, biologists are coming to realize that they have reached not the end of biology but the beginning of a new era. Indeed, Keller predicts that in the new century we will witness another Cambrian era, this time in new forms of biological thought rather than in new forms of biological life.
With CRISPR/Cas gene editing tools in hand, we are currently experiencing a new dimension in genetic engineering. But where should the journey lead? Should we treat diseases or better repair them genetically? Will the new genetic engineering, combined with modern reproductive biology, lead to designer babies? And: May we allow a liberalization of these techniques as citizen science? New methods can precisely alter the genetic material - and they leave no traces. This gene and genome surgery thrives on increasing knowledge about the mode of action of genes, those trait-giving regions in the genome. This knowledge is being applied in practice, particularly in the breeding of more resistant and higher-yielding crops. And what about us? The author shows that gene variants have long been associated not only with diseases, but also with nutritional preferences or intelligence. Therapeutic and optimization options are close at hand. What effect does the environment have on the expression of genetic material? Genes can be shaped during a person's lifetime by the environment, nutrition or experiences and thus passed on to their offspring in a modified form. So, does society have a new form of long-term responsibility for (epi)genetic integrity? In this vividly and comprehensibly written book, the author explains the state of genetic engineering without assuming too much prior knowledge and invites an open dialogue on this ambivalent topic. Get your own idea of the fascinating yet intimidating possibilities of genetic engineering. Where do you stand on the issue? With the help of this book, you have the chance to form a differentiated opinion. This book is a translation of the original German 1st edition Generation Gen-Schere by Röbbe Wünschiers, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). The text was subsequently revised by the author. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Nearly four decades ago Richard Dawkins published The Selfish Gene, famously reducing humans to “survival machines” whose sole purpose was to preserve “the selfish molecules known as genes.” How these selfish genes work together to construct the organism, however, remained a mystery. Standing atop a wealth of new research, The Society of Genes now provides a vision of how genes cooperate and compete in the struggle for life. Pioneers in the nascent field of systems biology, Itai Yanai and Martin Lercher present a compelling new framework to understand how the human genome evolved and why understanding the interactions among our genes shifts the basic paradigm of modern biology. Contrary to what Dawkins’s popular metaphor seems to imply, the genome is not made of individual genes that focus solely on their own survival. Instead, our genomes comprise a society of genes which, like human societies, is composed of members that form alliances and rivalries. In language accessible to lay readers, The Society of Genes uncovers genetic strategies of cooperation and competition at biological scales ranging from individual cells to entire species. It captures the way the genome works in cancer cells and Neanderthals, in sexual reproduction and the origin of life, always underscoring one critical point: that only by putting the interactions among genes at center stage can we appreciate the logic of life.
In evolution, most genes survive and spread within populations because they increase the ability of their hosts (or their close relatives) to survive and reproduce. But some genes spread in spite of being harmful to the host organism—by distorting their own transmission to the next generation, or by changing how the host behaves toward relatives. As a consequence, different genes in a single organism can have diametrically opposed interests and adaptations.Covering all species from yeast to humans, Genes in Conflict is the first book to tell the story of selfish genetic elements, those continually appearing stretches of DNA that act narrowly to advance their own replication at the expense of the larger organism. As Austin Burt and Robert Trivers show, these selfish genes are a universal feature of life with pervasive effects, including numerous counter-adaptations. Their spread has created a whole world of socio-genetic interactions within individuals, usually completely hidden from sight.Genes in Conflict introduces the subject of selfish genetic elements in all its aspects, from molecular and genetic to behavioral and evolutionary. Burt and Trivers give us access for the first time to a crucial area of research—now developing at an explosive rate—that is cohering as a unitary whole, with its own logic and interconnected questions, a subject certain to be of enduring importance to our understanding of genetics and evolution.
This book assesses the scientific value and merit of research on human genetic differencesâ€"including a collection of DNA samples that represents the whole of human genetic diversityâ€"and the ethical, organizational, and policy issues surrounding such research. Evaluating Human Genetic Diversity discusses the potential uses of such collection, such as providing insight into human evolution and origins and serving as a springboard for important medical research. It also addresses issues of confidentiality and individual privacy for participants in genetic diversity research studies.