Download Free The Map Building And Exploration Strategies Of A Simple Sonar Equipped Mobile Robot Book in PDF and EPUB Free Download. You can read online The Map Building And Exploration Strategies Of A Simple Sonar Equipped Mobile Robot and write the review.

First book to describe a way of determining the best method to use to enable a robot to navigate.
Localization and mapping are the essence of successful navigation in mobile platform technology. Localization is a fundamental task in order to achieve high levels of autonomy in robot navigation and robustness in vehicle positioning. Robot localization and mapping is commonly related to cartography, combining science, technique and computation to build a trajectory map that reality can be modelled in ways that communicate spatial information effectively. This book describes comprehensive introduction, theories and applications related to localization, positioning and map building in mobile robot and autonomous vehicle platforms. It is organized in twenty seven chapters. Each chapter is rich with different degrees of details and approaches, supported by unique and actual resources that make it possible for readers to explore and learn the up to date knowledge in robot navigation technology. Understanding the theory and principles described in this book requires a multidisciplinary background of robotics, nonlinear system, sensor network, network engineering, computer science, physics, etc.
Spatiotemporal models are emerging as a very important topic in several disciplines, including neurobiology and artificial neural networks. Many hard problems exist in this area. Examples include understanding the capabilities of nonlinear dynamical systems on a lattice and of networks of spiking neurons (both natural and artificial), training such systems, implementing them in hardware, understanding biological signals like the EEG, etc. Besides the state-of-the-art in the area of spatiotemporal models, the book also covers the neurobiological, and the artificial systems communities.
First book to describe a way of determining the best method to use to enable a robot to navigate.
The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here.
This book contains a selection of higher quality and reviewed papers of the 15th Portuguese Conference on Artificial Intelligence, EPIA 2011, held in Lisbon, Portugal, in October 2011. The 50 revised full papers presented were carefully reviewed and selected from a total of 203 submissions. The papers are organized in topical sections on affective computing, ambient intelligence environments, artificial intelligence methodologies for games, artificial intelligence in transportation systems, artificial life evolutionary algorithms, computational logic with applications, general artificial intelligence, intelligent robotics, knowledge discovery and business intelligence, multi-agent systems: theory and applications, social simulation and modeling, text mining and applications, and doctoral symposium on artificial intelligence.
Mobile Robotics: A Practical Introduction (2nd edition) is an excellent introduction to the foundations and methods used for designing completely autonomous mobile robots. A fascinating, cutting-edge, research topic, autonomous mobile robotics is now taught in more and more universities. In this book you are introduced to the fundamental concepts of this complex field via twelve detailed case studies that show how to build and program real working robots. Topics covered in clued learning, autonomous navigation in unmodified, noisy and unpredictable environments, and high fidelity robot simulation. This new edition has been updated to include a new chapter on novelty detection, and provides a very practical introduction to mobile robotics for a general scientific audience. It is essential reading for 2nd and 3rd year undergraduate students and postgraduate students studying robotics, artificial intelligence, cognitive science and robot engineering. The update and overview of core concepts in mobile robotics will assist and encourage practitioners of the field and set challenges to explore new avenues of research in this exiting field. The author is Senior Lecturer at the Department of Computer Science at the University of Essex. "A very fine overview over the relevant problems to be solved in the attempt to bring intelligence to a moving vehicle." Professor Dr. Ewald von Puttkamer, University of Kaiserslautern "Case studies show ways of achieving an impressive repertoire of kinds of learned behaviour, navigation and map-building. The book is an admirable introduction to this modern approach to mobile robotics and certainly gives a great deal of food for thought. This is an important and though-provoking book." Alex M. Andrew in Kybernetes Vol 29 No 4 and Robotica Vol 18
This book is an introduction to the foundations and methods used for designing completely autonomous mobile robots. Readers are introduced to the fundamental concepts of mobile robotics via twelve detailed case studies which show how to build and program real working robots. The book provides a very practical introduction to mobile robotics for a general scientific audience, and is essential reading for practitioners and students working in robotics, artificial intelligence, cognitive science and robot engineering.
The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.
This book constitutes a carefully arranged selection of revised papers on assistive technology, first presented at related AAAI workshops between 1995 and 1998. The book is devoted to the advancement and use of AI stimulated technology that can help users extend their current range of cognitive and sensory abilities or overcome their motor disabilities. Among various issues in the interdisciplinary area of assistive technology, the papers address topics from natural language processing, planning, robotics, user interface design, computer vision, and learning.