Download Free The Lte Advanced Deployment Handbook Book in PDF and EPUB Free Download. You can read online The Lte Advanced Deployment Handbook and write the review.

LTE-Advanced is the new Global standard which is expected to create a foundation for the future wireless broadband services. The standard incorporates all the latest technologies recently developed in the field of wireless communications. Presented in a modular style, the book provides an introductory description for beginners as well as practical guidelines for telecom specialists. It contains an introductory module that is suitable for the initial studies of the technology based on the 3GPPRelease 10, 11 and beyond of LTE and SAE. The latter part of the book is suitable for experienced professionals who will benefit from the practical descriptions of the physical core and radio network planning, end-to-end performance measurements, physical network construction and optimization of the system. The focus of the book is in the functioning, planning, construction, measurements and optimization of the radio and core networks of the Release 10 and beyond of the 3GPP LTE and SAE standards. It looks at the practical description of the Advanced version of the LTE/SAE, how to de-mystify the LTE-Advanced functionality and planning, and how to carry out practical measurements of the system. In general, the book describes "how-to-do-it" for the 4G system which is compliant with the ITU-R requirements.
LTE-Advanced: A Practical Systems Approach to Understanding 3GPP LTE Releases 10 and 11 Radio Access Technologies is an in-depth, systematic and structured technical reference on 3GPP's LTE-Advanced (Releases 10 and 11), covering theory, technology and implementation, written by an author who has been involved in the inception and development of these technologies for over 20 years. The book not only describes the operation of individual components, but also shows how they fit into the overall system and operate from a systems perspective. Uniquely, this book gives in-depth information on upper protocol layers, implementation and deployment issues, and services, making it suitable for engineers who are implementing the technology into future products and services. Reflecting the author's 25 plus years of experience in signal processing and communication system design, this book is ideal for professional engineers, researchers, and graduate students working in cellular communication systems, radio air-interface technologies, cellular communications protocols, advanced radio access technologies for beyond 4G systems, and broadband cellular standards. - An end-to-end description of LTE/LTE-Advanced technologies using a top-down systems approach, providing an in-depth understanding of how the overall system works - Detailed algorithmic descriptions of the individual components' operation and inter-connection - Strong emphasis on implementation and deployment scenarios, making this a very practical book - An in-depth coverage of theoretical and practical aspects of LTE Releases 10 and 11 - Clear and concise descriptions of the underlying principles and theoretical concepts to provide a better understanding of the operation of the system's components - Covers all essential system functionalities, features, and their inter-connections based on a clear protocol structure, including detailed signal flow graphs and block diagrams - Includes methodologies and results related to link-level and system-level evaluations of LTE-Advanced - Provides understanding and insight into the advanced underlying technologies in LTE-Advanced up to and including Release 11: multi-antenna signal processing, OFDM, carrier aggregation, coordinated multi-point transmission and reception, eICIC, multi-radio coexistence, E-MBMS, positioning methods, real-time and non-real-time wireless multimedia applications
This practical handbook and reference provides a complete understanding of the telecommunications field supported by descriptions and case examples throughout Taking a practical approach, The Telecommunications Handbook examines the principles and details of all of the major and modern telecommunications systems currently available to industry and to end-users. It gives essential information about usage, architectures, functioning, planning, construction, measurements and optimisation. The structure of the book is modular, giving both overall descriptions of the architectures and functionality of typical use cases, as well as deeper and practical guidelines for telecom professionals. The focus of the book is on current and future networks, and the most up-to-date functionalities of each network are described in sufficient detail for deployment purposes. The contents include an introduction to each technology, its evolution path, feasibility and utilization, solution and network architecture, and technical functioning of the systems (signalling, coding, different modes for channel delivery and security of core and radio system). The planning of the core and radio networks (system-specific field test measurement guidelines, hands-on network planning advices and suggestions for the parameter adjustments) and future systems are also described. Each chapter covers aspects individually for easy reference, including approaches such as: functional blocks, protocol layers, hardware and software, planning, optimization, use cases, challenges, solutions to potential problems Provides very practical detail on the planning and operation of networks to enable readers to apply the content in real-world deployments Bridges the gap between the communications in the academic context and the practical knowledge and skills needed to work in the telecommunications industry Section divisions include: General theory; Fixed telecommunications; Mobile communications; Space communications; Other and special communications; and Planning and management of telecommunication networks Covers new commercial and enhanced systems deployed, such as IPv6 based networks, LTE-Advanced and GALILEO An essential reference for Technical personnel at telecom operators; equipment and terminal manufacturers; Engineers working for network operators.
Describing the essential aspects that need to be considered during the deployment and operational phases of 3GPP LTE/SAE networks, this book gives a complete picture of LTE systems, as well as providing many examples from operational networks. It demystifies the structure, functioning, planning and measurements of both the radio and core aspects of the evolved 3G system. The content includes an overview of the LTE/SAE environment, architectural and functional descriptions of the radio and core network, functionality of the LTE applications, international roaming principles, security solutions and network measurement methods. In addition, this book gives essential guidelines and recommendations about the transition from earlier mobile communications systems towards the LTE/SAE era and the next generation of LTE, LTE-Advanced. The book is especially suitable for the operators that face new challenges in the planning and deployment phases of LTE/SAE, and is also useful for network vendors, service providers, telecommunications consultancy companies and technical institutes as it provides practical information about the realities of the system. Presents the complete end-to-end planning and measurement guidelines for the realistic deployment of networks Explains the essential and realistic aspects of commercial LTE systems as well as the future possibilities An essential tool during the development of transition strategies from other network solutions towards LTE/SAE Contains real-world case studies and examples to help readers understand the practical side of the system
Written by experts actively involved in the 3GPP standards and product development, LTE for UMTS, Second Edition gives a complete and up-to-date overview of Long Term Evolution (LTE) in a systematic and clear manner. Building upon on the success of the first edition, LTE for UMTS, Second Edition has been revised to now contain improved coverage of the Release 8 LTE details, including field performance results, transport network, self optimized networks and also covering the enhancements done in 3GPP Release 9. This new edition also provides an outlook to Release 10, including the overview of Release 10 LTE-Advanced technology components which enable reaching data rates beyond 1 Gbps. Key updates for the second edition of LTE for UMTS are focused on the new topics from Release 9 & 10, and include: LTE-Advanced; Self optimized networks (SON); Transport network dimensioning; Measurement results.
This book provides an insight into the key practical aspects and best practice of 4G-LTE network design, performance, and deployment Design, Deployment and Performance of 4G-LTE Networks addresses the key practical aspects and best practice of 4G networks design, performance, and deployment. In addition, the book focuses on the end-to-end aspects of the LTE network architecture and different deployment scenarios of commercial LTE networks. It describes the air interface of LTE focusing on the access stratum protocol layers: PDCP, RLC, MAC, and Physical Layer. The air interface described in this book covers the concepts of LTE frame structure, downlink and uplink scheduling, and detailed illustrations of the data flow across the protocol layers. It describes the details of the optimization process including performance measurements and troubleshooting mechanisms in addition to demonstrating common issues and case studies based on actual field results. The book provides detailed performance analysis of key features/enhancements such as C-DRX for Smartphones battery saving, CSFB solution to support voice calls with LTE, and MIMO techniques. The book presents analysis of LTE coverage and link budgets alongside a detailed comparative analysis with HSPA+. Practical link budget examples are provided for data and VoLTE scenarios. Furthermore, the reader is provided with a detailed explanation of capacity dimensioning of the LTE systems. The LTE capacity analysis in this book is presented in a comparative manner with reference to the HSPA+ network to benchmark the LTE network capacity. The book describes the voice options for LTE including VoIP protocol stack, IMS Single Radio Voice Call Continuity (SRVCC). In addition, key VoLTE features are presented: Semi-persistent scheduling (SPS), TTI bundling, Quality of Service (QoS), VoIP with C-DRX, Robust Header Compression (RoHC), and VoLTE Vocoders and De-Jitter buffer. The book describes several LTE and LTE-A advanced features in the evolution from Release 8 to 10 including SON, eICIC, CA, CoMP, HetNet, Enhanced MIMO, Relays, and LBS. This book can be used as a reference for best practices in LTE networks design and deployment, performance analysis, and evolution strategy. Conveys the theoretical background of 4G-LTE networks Presents key aspects and best practice of 4G-LTE networks design and deployment Includes a realistic roadmap for evolution of deployed 3G/4G networks Addresses the practical aspects for designing and deploying commercial LTE networks. Analyzes LTE coverage and link budgets, including a detailed comparative analysis with HSPA+. References the best practices in LTE networks design and deployment, performance analysis, and evolution strategy Covers infrastructure-sharing scenarios for CAPEX and OPEX saving. Provides key practical aspects for supporting voice services over LTE, Written for all 4G engineers/designers working in networks design for operators, network deployment engineers, R&D engineers, telecom consulting firms, measurement/performance tools firms, deployment subcontractors, senior undergraduate students and graduate students interested in understanding the practical aspects of 4G-LTE networks as part of their classes, research, or projects.
"Where this book is exceptional is that the reader will not just learn how LTE works but why it works" Adrian Scrase, ETSI Vice-President, International Partnership Projects Following on the success of the first edition, this book is fully updated, covering the latest additions to LTE and the key features of LTE-Advanced. This book builds on the success of its predecessor, offering the same comprehensive system-level understanding built on explanations of the underlying theory, now expanded to include complete coverage of Release 9 and the developing specifications for LTE-Advanced. The book is a collaborative effort of more than 40 key experts representing over 20 companies actively participating in the development of LTE, as well as academia. The book highlights practical implications, illustrates the expected performance, and draws comparisons with the well-known WCDMA/HSPA standards. The authors not only pay special attention to the physical layer, giving an insight into the fundamental concepts of OFDMA-FDMA and MIMO, but also cover the higher protocol layers and system architecture to enable the reader to gain an overall understanding of the system. Key New Features: Comprehensively updated with the latest changes of the LTE Release 8 specifications, including improved coverage of Radio Resource Management RF aspects and performance requirements Provides detailed coverage of the new LTE Release 9 features, including: eMBMS, dual-layer beamforming, user equipment positioning, home eNodeBs / femtocells and pico cells and self-optimizing networks Evaluates the LTE system performance Introduces LTE-Advanced, explaining its context and motivation, as well as the key new features including: carrier aggregation, relaying, high-order MIMO, and Cooperative Multi-Point transmission (CoMP). Includes an accompanying website containing a complete list of acronyms related to LTE and LTE-Advanced, with a brief description of each (http://www.wiley.com/go/sesia_theumts) This book is an invaluable reference for all research and development engineers involved in implementation of LTE or LTE-Advanced, as well as graduate and PhD students in wireless communications. Network operators, service providers and R&D managers will also find this book insightful.
Deploying IPv6 in 3GPP Networks – Evolving Mobile Broadband from 2G to LTE and Beyond A practical guide enabling mobile operators to deploy IPv6 with confidence The most widely used cellular mobile broadband network technology is based on the 3GPP standards. The history and background of the 3GPP technology is in the Global Mobile Service (GSM) technology and the work done in European Telecommunications Standards Institute (ETSI). This primary voice service network has evolved to be the dominant mobile Internet access technology. Deploying IPv6 in 3GPP Networks covers how Internet Protocol version 6 (IPv6) is currently defined in the industry standards for cellular mobile broadband, why and how this route was taken in the technology, and what is the current reality of the deployment. Furthermore, it offers the authors’ views on how some possible IPv6 related advances 3GPP networks may be improved during the coming years. It gives guidance how to implement and deploy IPv6 correctly in the Third Generation Partnership Project (3GPP) mobile broadband environment, and what issues one may face when doing so. The book covers 3GPP technologies from 2G to LTE, and offers some ideas for the future. Key features written by highly respected and experienced authors from the IPv6 / mobile world Provides an explanation of the technical background for some not-so-obvious design choices, what to concentrate on, and what transition strategies should be used by the vendors and the operators Offers a useful reference guide for operators and vendors entering into IPv6 business
A comprehensive summary of theoretical and practical developments in LTE Heterogeneous Networks The last decade has witnessed the proliferation of mobile broadband data and the trend is likely to increase in the coming years. Current cellular networks are ill equipped to deal with this surge in demand. To satisfy user demand and maximize profits, a new paradigm to operate networks is needed. Heterogeneous networks, that deploy an overlay of small cells with limited coverage and transmit power, over a macro coverage area is the solution by providing capacity and coverage where it is needed. This book presents a comprehensive overview of small cell based heterogeneous networks within the framework of 3GPP LTE-Advanced which is the major enabler of current and future heterogeneous networks. The book first establishes the basics of LTE standards 8 -10. Wherever relevant, the underlying theory of wireless communications is explained and the signaling and protocol aspects of LTE Releases 8-10 are presented. Next the book presents a systematic study of the inter cell interference (eICIC and FeICIC) mechanisms that have been standardized in LTE releases 10 and 11 to mitigate the interference arising in heterogeneous networks. From simple blank subframe design and implementation, the book discusses more advanced transceiver signal processing and carrier aggregation (CA) based mechanisms to improve performance. Besides data, control channel enhancements such as enhanced PDCCH (ePDCCH) are also discussed. Subsequently the book discusses the possibility of base stations being allowed to coordinate to manage interference. This technique, called CoMP, has the potential of vastly improving network performance. However several practical challenges first have to be overcome before this potential can be realized. The book presents the different CoMP categories introduced in LTE release 11, the required signal processing and the changes that were introduced in Release-11 for supporting CoMP. The book then presents the state of the art developments in heterogeneous networks that are currently taking place in 3GPP with the initiation of Release 12. A whole array of new technologies have been introduced such as dynamic switching of small cells, new carrier types with reduced control signaling, dynamic reconfiguration of TDD-LTE, joint configuration of TDD and FDD via carrier aggregation and lastly advanced MIMO signal processing with three dimensional beamforming. All these technologies will work in unison leading to efficient operations of small cells. The authors thus comprehensively summarize the advances in heterogeneous networks over the last couple of years as reflected in various LTE releases and then look ahead at what to expect in the future. Fully illustrated throughout and with an accompanying website including Matlab code for simulating heterogeneous networks, LTE channel models, and References to 3GPP specifications, contributions, and updates on recent standardization activities. The authors, being involved in LTE standardization, are well placed to give an excellent view on this topic, including valuable background and design rationale. A comprehensive summary of wireless communications theory and practical developments in LTE heterogeneous networks. Authors are experts in this field and are active members in standardization proceedings, enabling up-to-date coverage of current developments Multiple case studies explain network design optimization of various heterogeneous network deployments. Accompanying website includes Matlab code for simulating heterogeneous networks, LTE channel models, and References to 3GPP specifications, contributions, and updates on recent standardization activities Essential reading for Engineers and practitioners in wireless industry.
Understand the new technologies of the LTE standard and their impact on system performance improvements with this practical guide.