Download Free The Little Typer Book in PDF and EPUB Free Download. You can read online The Little Typer and write the review.

An introduction to dependent types, demonstrating the most beautiful aspects, one step at a time. A program's type describes its behavior. Dependent types are a first-class part of a language, and are much more powerful than other kinds of types; using just one language for types and programs allows program descriptions to be as powerful as the programs they describe. The Little Typer explains dependent types, beginning with a very small language that looks very much like Scheme and extending it to cover both programming with dependent types and using dependent types for mathematical reasoning. Readers should be familiar with the basics of a Lisp-like programming language, as presented in the first four chapters of The Little Schemer. The first five chapters of The Little Typer provide the needed tools to understand dependent types; the remaining chapters use these tools to build a bridge between mathematics and programming. Readers will learn that tools they know from programming—pairs, lists, functions, and recursion—can also capture patterns of reasoning. The Little Typer does not attempt to teach either practical programming skills or a fully rigorous approach to types. Instead, it demonstrates the most beautiful aspects as simply as possible, one step at a time.
A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.
A new edition of a textbook that provides students with a deep, working understanding of the essential concepts of programming languages, completely revised, with significant new material. This book provides students with a deep, working understanding of the essential concepts of programming languages. Most of these essentials relate to the semantics, or meaning, of program elements, and the text uses interpreters (short programs that directly analyze an abstract representation of the program text) to express the semantics of many essential language elements in a way that is both clear and executable. The approach is both analytical and hands-on. The book provides views of programming languages using widely varying levels of abstraction, maintaining a clear connection between the high-level and low-level views. Exercises are a vital part of the text and are scattered throughout; the text explains the key concepts, and the exercises explore alternative designs and other issues. The complete Scheme code for all the interpreters and analyzers in the book can be found online through The MIT Press web site. For this new edition, each chapter has been revised and many new exercises have been added. Significant additions have been made to the text, including completely new chapters on modules and continuation-passing style. Essentials of Programming Languages can be used for both graduate and undergraduate courses, and for continuing education courses for programmers.
An introduction to dependent types, demonstrating the most beautiful aspects, one step at a time. A program's type describes its behavior. Dependent types are a first-class part of a language, and are much more powerful than other kinds of types; using just one language for types and programs allows program descriptions to be as powerful as the programs they describe. The Little Typer explains dependent types, beginning with a very small language that looks very much like Scheme and extending it to cover both programming with dependent types and using dependent types for mathematical reasoning. Readers should be familiar with the basics of a Lisp-like programming language, as presented in the first four chapters of The Little Schemer. The first five chapters of The Little Typer provide the needed tools to understand dependent types; the remaining chapters use these tools to build a bridge between mathematics and programming. Readers will learn that tools they know from programming—pairs, lists, functions, and recursion—can also capture patterns of reasoning. The Little Typer does not attempt to teach either practical programming skills or a fully rigorous approach to types. Instead, it demonstrates the most beautiful aspects as simply as possible, one step at a time.
A handbook to the Coq software for writing and checking mathematical proofs, with a practical engineering focus. The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time. Two topics, rarely discussed elsewhere, are covered in detail: effective dependently typed programming (making productive use of a feature at the heart of the Coq system) and construction of domain-specific proof tactics. Almost every subject covered is also relevant to interactive computer theorem proving in general, not just program verification, demonstrated through examples of verified programs applied in many different sorts of formalizations. The book develops a unique automated proof style and applies it throughout; even experienced Coq users may benefit from reading about basic Coq concepts from this novel perspective. The book also offers a library of tactics, or programs that find proofs, designed for use with examples in the book. Readers will acquire the necessary skills to reimplement these tactics in other settings by the end of the book. All of the code appearing in the book is freely available online.
with a foreword by Robin Milnerand drawings by Duane Bibby Over the past few years, ML has emerged as one of the most important members of the family of programming languages. Many professors in the United States and other countries use ML to teach courses on the principles of programming and on programming languages. In addition, ML has emerged as a natural language for software engineering courses because it provides the most sophisticated and expressive module system currently available.Felleisen and Friedman are well known for gently introducing readers to difficult ideas. The Little MLer is an introduction to thinking about programming and the ML programming language. The authors introduce those new to programming, as well as those experienced in other programming languages, to the principles of types, computation, and program construction. Most important, they help the reader to think recursively with types about programs.
A thorough and accessible introduction to a range of key ideas in type systems for programming language. The study of type systems for programming languages now touches many areas of computer science, from language design and implementation to software engineering, network security, databases, and analysis of concurrent and distributed systems. This book offers accessible introductions to key ideas in the field, with contributions by experts on each topic. The topics covered include precise type analyses, which extend simple type systems to give them a better grip on the run time behavior of systems; type systems for low-level languages; applications of types to reasoning about computer programs; type theory as a framework for the design of sophisticated module systems; and advanced techniques in ML-style type inference. Advanced Topics in Types and Programming Languages builds on Benjamin Pierce's Types and Programming Languages (MIT Press, 2002); most of the chapters should be accessible to readers familiar with basic notations and techniques of operational semantics and type systems—the material covered in the first half of the earlier book. Advanced Topics in Types and Programming Languages can be used in the classroom and as a resource for professionals. Most chapters include exercises, ranging in difficulty from quick comprehension checks to challenging extensions, many with solutions.
foreword by Ralph E. Johnson and drawings by Duane Bibby 'This is a book of 'why' not 'how.' If you are interested in the nature of computation and curious about the very idea behind object orientation, this book is for you. This book will engage your brain (if not your tummy). Through its sparkling interactive style, you will learn about three essential OO concepts: interfaces, visitors, and factories. A refreshing change from the 'yet another Java book' phenomenon. Every serious Java programmer should own a copy.' -- Gary McGraw, Ph.D., Research Scientist at Reliable Software Technologies and coauthor of Java Security Java is a new object-oriented programming language that was developed by Sun Microsystems for programming the Internet and intelligent appliances. In a very short time it has become one of the most widely used programming languages for education as well as commercial applications. Design patterns, which have moved object-oriented programming to a new level, provide programmers with a language to communicate with others about their designs. As a result, programs become more readable, more reusable, and more easily extensible. In this book, Matthias Felleisen and Daniel Friedman use a small subset of Java to introduce pattern-directed program design. With their usual clarity and flair, they gently guide readers through the fundamentals of object-oriented programming and pattern-based design. Readers new to programming, as well as those with some background, will enjoy their learning experience as they work their way through Felleisen and Friedman's dialogue. src='/graphics/yellowball.gif' href='/books/FELTP/Java-fm.html'Foreword and Preface
An introduction to writing proofs about computer programs, written in an accessible question-and-answer style, complete with step-by-step examples and a simple proof assistant.