Download Free The Legacy Of Alladi Ramakrishnan In The Mathematical Sciences Book in PDF and EPUB Free Download. You can read online The Legacy Of Alladi Ramakrishnan In The Mathematical Sciences and write the review.

In the spirit of Alladi Ramakrishnan’s profound interest and contributions to three fields of science — Mathematics, Statistics, and Physics — this volume contains invited surveys and research articles from prominent members of these communities who also knew Ramakrishnan personally and greatly respected his influence in these areas of science. Historical photos, telegrams, and biographical narratives of Alladi Ramakrishnan’s illustrious career of special interest are included as well.
This is a kaleidoscopic account of the remarkable life story of Alladi Ramakrishnan (1923-2008), an internationally reputed physicist, and the son of Sir Alladi Krishnaswami Iyer (1883-1953), one of India's most eminent jurists.Part I of the autobiography gives a fascinating account his early life in Madras, India during the last decades of British colonial rule, and the leading role played by Sir Alladi in drafting the Constitution of India. Then follows the incredible saga of his creation of MATSCIENCE, The Institute of Mathematical Sciences, in Madras, inspired by his visit to the Institute for Advanced Study in Princeton, and the result of a Theoretical Physics Seminar which he organized in his family home Ekamra Nivas in Madras, which received the endorsement of Nobel Laureate Niels Bohr, and the support of India's Prime Minister Jawaharlal Nehru.Part II covers the period of Ramakrishnan's term as Director of MATSCIENCE, and his visits to about 200 centres of learning the world over, where he interacted with leading scientists and lectured on his research in the fields of Probability, Stochastic Processes, Elementary Particle Physics, Matrix Theory, and on his novel treatment of Einstein's Special Relativity. Historical photos, letters, and documents of special interest are included.
This is an autobiography and an exposition on the contributions and personalities of many of the leading researchers in mathematics and physics with whom Dr Krishna Alladi, Professor of Mathematics at the University of Florida, has had personal interaction with for over six decades. Discussions of various aspects of the physics and mathematics academic professions are included.Part I begins with the author's unusual and frequent introductions as a young boy to scientific luminaries like Nobel Laureates Niels Bohr, Murray Gell-Mann, and Richard Feynman, in the company of his father, the scientist Alladi Ramakrishnan. Also in Part I is an exciting account of how the author started his research investigations in number theory as an undergraduate, and how contact and collaboration with the great Paul Erdős as a student influenced him in his career.In-depth views of the Institute for Advanced Study, Princeton, and several major American Universities are given, and fascinating descriptions of the work and personalities of some Field Medalists and eminent mathematicians are provided.Part II deals with the author's tenure at the University of Florida where he initiated several programs as Mathematics Chair for a decade, and how he has served the profession in various capacities, most notably as Chair of the SASTRA Ramanujan Prize Committee and Editor-in-Chief of The Ramanujan Journal.The book would appeal to academicians and the general public, since the author has blended academic and scientific discussions at a non-technical level with descriptions of destinations in his international travels for work and pleasure. The reader is invited to dig as deep as desired and is guaranteed to be treated to whimsical stories and personal peeks at some of the great luminaries of the twentieth and twenty-first centuries.
This volume reflects the contributions stemming from the conference Analytic and Combinatorial Number Theory: The Legacy of Ramanujan which took place at the University of Illinois at Urbana-Champaign on June 6-9, 2019. The conference included 26 plenary talks, 71 contributed talks, and 170 participants. As was the case for the conference, this book is in honor of Bruce C Berndt and in celebration of his mathematics and his 80th birthday.Along with a number of papers previously appearing in Special Issues of the International Journal of Number Theory, the book collects together a few more papers, a biography of Bruce by Atul Dixit and Ae Ja Yee, a preface by George Andrews, a gallery of photos from the conference, a number of speeches from the conference banquet, the conference poster, a list of Bruce's publications at the time this volume was created, and a list of the talks from the conference.
Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find this volume a valuable resource on new developments in various aspects of number theory.
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.
Contains graduate-level introductions by international experts to five areas of research in orthogonal polynomials and special functions.
In the last decade, the areas of quadratic and higher degree forms have witnessed dramatic advances. This volume is an outgrowth of three seminal conferences on these topics held in 2009, two at the University of Florida and one at the Arizona Winter School. The volume also includes papers from the two focused weeks on quadratic forms and integral lattices at the University of Florida in 2010.Topics discussed include the links between quadratic forms and automorphic forms, representation of integers and forms by quadratic forms, connections between quadratic forms and lattices, and algorithms for quaternion algebras and quadratic forms. The book will be of interest to graduate students and mathematicians wishing to study quadratic and higher degree forms, as well as to established researchers in these areas. Quadratic and Higher Degree Forms contains research and semi-expository papers that stem from the presentations at conferences at the University of Florida as well as survey lectures on quadratic forms based on the instructional workshop for graduate students held at the Arizona Winter School. The survey papers in the volume provide an excellent introduction to various aspects of the theory of quadratic forms starting from the basic concepts and provide a glimpse of some of the exciting questions currently being investigated. The research and expository papers present the latest advances on quadratic and higher degree forms and their connections with various branches of mathematics.