Download Free The Lattice Boltzmann Method Book in PDF and EPUB Free Download. You can read online The Lattice Boltzmann Method and write the review.

This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.
Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.
This book describes a modern numerical technique, a lattice Boltzmann method, for shallow water flows with or without flow turbulence. This method requires only a simple microscopic equation to determine the depth and velocity based on its recovered macroscopic properties. The method is accurate and efficient for simulating complicated flows and flows within complex geometries, so it is becoming a powerful design tool in fluids engineering. The book may be used as a reference for scientists and engineers, a practical guide to the method for consultant organisations, and a textbook for graduates in engineering sciences such as coastal, civil and environmental engineering.
Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.
This unique professional volume is about the recent advances in the lattice Boltzmann method (LBM). It introduces a new methodology, namely the simplified and highly stable lattice Boltzmann method (SHSLBM), for constructing numerical schemes within the lattice Boltzmann framework. Through rigorous mathematical derivations and abundant numerical validations, the SHSLBM is found to outperform the conventional LBM in terms of memory cost, boundary treatment and numerical stability.This must-have title provides every necessary detail of the SHSLBM and sample codes for implementation. It is a useful handbook for scholars, researchers, professionals and students who are keen to learn, employ and further develop this novel numerical method.
Flowing matter is all around us, from daily-life vital processes (breathing, blood circulation), to industrial, environmental, biological, and medical sciences. Complex states of flowing matter are equally present in fundamental physical processes, far remote from our direct senses, such as quantum-relativistic matter under ultra-high temperature conditions (quark-gluon plasmas). Capturing the complexities of such states of matter stands as one of the most prominent challenges of modern science, with multiple ramifications to physics, biology, mathematics, and computer science. As a result, mathematical and computational techniques capable of providing a quantitative account of the way that such complex states of flowing matter behave in space and time are becoming increasingly important. This book provides a unique description of a major technique, the Lattice Boltzmann method to accomplish this task. The Lattice Boltzmann method has gained a prominent role as an efficient computational tool for the numerical simulation of a wide variety of complex states of flowing matter across a broad range of scales; from fully-developed turbulence, to multiphase micro-flows, all the way down to nano-biofluidics and lately, even quantum-relativistic sub-nuclear fluids. After providing a self-contained introduction to the kinetic theory of fluids and a thorough account of its transcription to the lattice framework, this text provides a survey of the major developments which have led to the impressive growth of the Lattice Boltzmann across most walks of fluid dynamics and its interfaces with allied disciplines. Included are recent developments of Lattice Boltzmann methods for non-ideal fluids, micro- and nanofluidic flows with suspended bodies of assorted nature and extensions to strong non-equilibrium flows beyond the realm of continuum fluid mechanics. In the final part, it presents the extension of the Lattice Boltzmann method to quantum and relativistic matter, in an attempt to match the major surge of interest spurred by recent developments in the area of strongly interacting holographic fluids, such as electron flows in graphene.
Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.
Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.
Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the model most suitable for the problems they are interested in. The book is targeted at graduate students and researchers who plan to investigate multiphase flows using LBMs. Throughout the text most of the popular multiphase LBMs are analyzed both theoretically and through numerical simulation. The authors present many of the mathematical derivations of the models in greater detail than is currently found in the existing literature. The approach to understanding and classifying the various models is principally based on simulation compared against analytical and observational results and discovery of undesirable terms in the derived macroscopic equations and sometimes their correction. A repository of FORTRAN codes for multiphase LBM models is also provided.
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.