Download Free The Kondo Problem To Heavy Fermions Book in PDF and EPUB Free Download. You can read online The Kondo Problem To Heavy Fermions and write the review.

The behaviour of magnetic impurities in metals has posed problems to challenge the condensed matter theorist over the past 30 years. This book deals with the concepts and techniques which have been developed to meet this challenge, and with their application to the interpretation of experiments. This book will be of interest to condensed matter physicists, particularly those interested in strong correlation problems. The detailed discussions of advanced many-body techniques should make it of interest to theoretical physicists in general.
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Publisher Description
A classic book on the Kondo effect by its discoverer, for graduate students and researchers in condensed matter physics.
This textbook is for a course in advanced solid-state theory. It is aimed at graduate students in their third or fourth year of study who wish to learn the advanced techniques of solid-state theoretical physics. The method of Green's functions is introduced at the beginning and used throughout. Indeed, it could be considered a book on practical applications of Green's functions, although I prefer to call it a book on physics. The method of Green's functions has been used by many theorists to derive equations which, when solved, provide an accurate numerical description of many processes in solids and quantum fluids. In this book I attempt to summarize many of these theories in order to show how Green's functions are used to solve real problems. My goal, in writing each section, is to describe calculations which can be compared with experiments and to provide these comparisons whenever available. The student is expected to have a background in quantum mechanics at the level acquired from a graduate course using the textbook by either L. I. Schiff, A. S. Davydov, or I. Landau and E. M. Lifshiftz. Similarly, a prior course in solid-state physics is expected, since the reader is assumed to know concepts such as Brillouin zones and energy band theory. Each chapter has problems which are an important part of the lesson; the problems often provide physical insights which are not in the text. Sometimes the answers to the problems are provided, but usually not.
A comprehensive account of the theory, experimental work and computer modelling of spin glasses.
This textbook is an accessible introduction to the theory underlying the many fascinating properties of solids. Assuming only an elementary knowledge of quantum mechanics, it describes the methods by which one can perform calculations and make predictions of some of the many complex phenomena that occur in solids and quantum liquids. The emphasis is on reaching important results by direct and intuitive methods, and avoiding unnecessary mathematical complexity. Designed as a self-contained text that starts at an elementary level and proceeds to more advanced topics, this book is aimed primarily at advanced undergraduate and graduate students in physics, materials science, and electrical engineering. Problem sets are included at the end of each chapter, with solutions available to lecturers. The coverage of some of fascinating developments in condensed matter physics will also appeal to experienced scientists in industry and academia working on electrical properties of materials.
The discovery of a duality between Anti-de Sitter spaces (AdS) and Conformal Field Theories (CFT) has led to major advances in our understanding of quantum field theory and quantum gravity. String theory methods and AdS/CFT correspondence maps provide new ways to think about difficult condensed matter problems. String theory methods based on the AdS/CFT correspondence allow us to transform problems so they have weak interactions and can be solved more easily. They can also help map problems to different descriptions, for instance mapping the description of a fluid using the Navier–Stokes equations to the description of an event horizon of a black hole using Einstein's equations. This textbook covers the applications of string theory methods and the mathematics of AdS/CFT to areas of condensed matter physics. Bridging the gap between string theory and condensed matter, this is a valuable textbook for students and researchers in both fields.
The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Annotation The six articles are heavily weighted toward an experimental perspective, but one details a particular set of theoretical models for f-electron systems, and the introduction overviews the role of magnetism in heavy fermion materials as well as summarizing the content of each subsequent article. They in turn cover superconductors, muon spin relaxation studies of small-moment heavy fermion systems, neutron scattering, and magnetism in the praseodymium-containing cuprates. Annotation copyrighted by Book News Inc., Portland, OR.