Download Free The Joy Of Abstraction Book in PDF and EPUB Free Download. You can read online The Joy Of Abstraction and write the review.

Mathematician and popular science author Eugenia Cheng is on a mission to show you that mathematics can be flexible, creative, and visual. This joyful journey through the world of abstract mathematics into category theory will demystify mathematical thought processes and help you develop your own thinking, with no formal mathematical background needed. The book brings abstract mathematical ideas down to earth using examples of social justice, current events, and everyday life – from privilege to COVID-19 to driving routes. The journey begins with the ideas and workings of abstract mathematics, after which you will gently climb toward more technical material, learning everything needed to understand category theory, and then key concepts in category theory like natural transformations, duality, and even a glimpse of ongoing research in higher-dimensional category theory. For fans of How to Bake Pi, this will help you dig deeper into mathematical concepts and build your mathematical background.
How both logical and emotional reasoning can help us live better in our post-truth world In a world where fake news stories change election outcomes, has rationality become futile? In The Art of Logic in an Illogical World, Eugenia Cheng throws a lifeline to readers drowning in the illogic of contemporary life. Cheng is a mathematician, so she knows how to make an airtight argument. But even for her, logic sometimes falls prey to emotion, which is why she still fears flying and eats more cookies than she should. If a mathematician can't be logical, what are we to do? In this book, Cheng reveals the inner workings and limitations of logic, and explains why alogic -- for example, emotion -- is vital to how we think and communicate. Cheng shows us how to use logic and alogic together to navigate a world awash in bigotry, mansplaining, and manipulative memes. Insightful, useful, and funny, this essential book is for anyone who wants to think more clearly.
This up-to-date introductory treatment employs category theory to explore the theory of structures. Its unique approach stresses concrete categories and presents a systematic view of factorization structures, offering a unifying perspective on earlier work and summarizing recent developments. Numerous examples, ranging from general to specific, illuminate the text. 1990 edition, updated 2004.
A delightful tour of the greatest ideas of math, showing how math intersects with philosophy, science, art, business, current events, and everyday life, by an acclaimed science communicator and regular contributor to the "New York Times."
SHORTLISTED FOR THE 2017 ROYAL SOCIETY SCIENCE BOOK PRIZE Even small children know there are infinitely many whole numbers - start counting and you'll never reach the end. But there are also infinitely many decimal numbers between zero and one. Are these two types of infinity the same? Are they larger or smaller than each other? Can we even talk about 'larger' and 'smaller' when we talk about infinity? In Beyond Infinity, international maths sensation Eugenia Cheng reveals the inner workings of infinity. What happens when a new guest arrives at your infinite hotel - but you already have an infinite number of guests? How does infinity give Zeno's tortoise the edge in a paradoxical foot-race with Achilles? And can we really make an infinite number of cookies from a finite amount of cookie dough? Wielding an armoury of inventive, intuitive metaphor, Cheng draws beginners and enthusiasts alike into the heart of this mysterious, powerful concept to reveal fundamental truths about mathematics, all the way from the infinitely large down to the infinitely small.
From imaginary numbers to the fourth dimension and beyond, mathematics has always been about imagining things that seem impossible at first glance. In x+y, Eugenia Cheng draws on the insights of higher-dimensional mathematics to reveal a transformative new way of talking about the patriarchy, mansplaining and sexism: a way that empowers all of us to make the world a better place. Using precise mathematical reasoning to uncover everything from the sexist assumptions that make society a harder place for women to live to the limitations of science and statistics in helping us understand the link between gender and society, Cheng's analysis replaces confusion with clarity, brings original thinking to well worn arguments - and provides a radical, illuminating and liberating new way of thinking about the world and women's place in it.
"Harmonic analysis is a branch of advanced mathematics with applications in such diverse areas as signal processing, medical imaging, and quantum mechanics. This classic monograph is the work of a prominent contributor to the field. Geared toward advanced undergraduates and graduate students, it focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition"--
This truly elementary book on categories introduces retracts, graphs, and adjoints to students and scientists.
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
In this stimulating, thought-provoking guide, a noted sculptor and teacher demonstrates how to discover a rich new design source in the abstractions inherent in natural forms. Through systematic study of such properties as line, form, shape, mass, pattern, light and dark, space, proportion, scale, perspective, and color as they appear in nature, students can learn to utilize the infinite variety and diversity of those elements as a wellspring of creative abstraction. The author invites students to learn the necessary techniques through a series of projects devoted to exploring and drawing plants, animals, birds, landscapes, seascapes, skies, and more. Lines of growth and structure, water and liquid forms, weather and atmospheric patterns, luminosity in plants and animals, earth colors and lightning are among the sources of abstraction available to the artist who is aware of them. This book will train you to see and use these elements and many more. An intriguing blend of art, psychology, and the natural sciences, Abstraction in Art and Nature is profusely illustrated with over 370 photographs, scientific illustrations, diagrams, and reproductions of works by the great masters. It not only offers a mind-stretching new way of learning and teaching basic design, but deepens our awareness of the natural environment. In short, Mr. Hale's book is an indispensable guide that artists, teachers, and students will want to have close at hand for instruction, inspiration, and practical guidance.