Download Free The Influence Of Fuel Composition On Engine Emissions Book in PDF and EPUB Free Download. You can read online The Influence Of Fuel Composition On Engine Emissions and write the review.

This volume of the IARC Monographs provides evaluations of the carcinogenicity of diesel and gasoline engine exhausts, and of 10 nitroarenes found in diesel engine exhaust: 3,7-dinitrofluoranthene, 3,9-dinitrofluoranthene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 6-nitrochrysene, 2-nitrofluorene, 1-nitropyrene, 4-nitropyrene, and 3-nitrobenzanthrone. Diesel engines are used for transport on and off roads (e.g. passenger cars, buses, trucks, trains, ships), for machinery in various industrial sectors (e.g. mining, construction), and for electricity generators, particularly in developing countries. Gasoline engines are used in cars and hand-held equipment (e.g. chainsaws). The emissions from such combustion engines comprise a complex and varying mixture of gases (e.g. carbon monoxide, nitrogen oxides), particles (e.g. PM10, PM2.5, ultrafine particles, elemental carbon, organic carbon, ash, sulfate, and metals), volatile organic compunds (e.g. benzene, formaldehyde) and semi-volatile organic compounds (e.g. polycyclic aromatic hydrocarbons) including oxygenated and nitrated derivatives of polycyclic aromatic hydrocarbons. Diesel and gasoline engines thus make a significant contribution to a broad range of air pollutants to which people are exposed in the general population as well as in different occupational settings. An IARC Monographs Working Group reviewed epidemiological evidence, animal bioassays, and mechanistic and other relevant data to reach conclusions as to the carcinogenic hazard to humans of environmental or occupational exposure to diesel and gasoline engine exhausts (including those associated with the mining, railroad, construction, and transportation industries) and to 10 selected nitroarenes. -- Back cover.
Erstmals eine umfassende und einheitliche Wissensbasis und Grundlage für weiterführende Studien und Forschung im Bereich der Automobiltechnik. Die Encyclopedia of Automotive Engineering ist die erste umfassende und einheitliche Wissensbasis dieses Fachgebiets und legt den Grundstein für weitere Studien und tiefgreifende Forschung. Weitreichende Querverweise und Suchfunktionen ermöglichen erstmals den zentralen Zugriff auf Detailinformationen zu bewährten Branchenstandards und -verfahren. Zusammenhängende Konzepte und Techniken aus Spezialbereichen lassen sich so einfacher verstehen. Neben traditionellen Themen des Fachgebiets beschäftigt sich diese Enzyklopädie auch mit "grünen" Technologien, dem Übergang von der Mechanik zur Elektronik und den Möglichkeiten zur Herstellung sicherer, effizienterer Fahrzeuge unter weltweit unterschiedlichen wirtschaftlichen Rahmenbedingungen. Das Referenzwerk behandelt neun Hauptbereiche: (1) Motoren: Grundlagen; (2) Motoren: Design; (3) Hybrid- und Elektroantriebe; (4) Getriebe- und Antriebssysteme; (5) Chassis-Systeme; (6) Elektrische und elektronische Systeme; (7) Karosserie-Design; (8) Materialien und Fertigung; (9) Telematik. - Zuverlässige Darstellung einer Vielzahl von Spezialthemen aus dem Bereich der Automobiltechnik. - Zugängliches Nachschlagewerk für Jungingenieure und Studenten, die die technologischen Grundlagen besser verstehen und ihre Kenntnisse erweitern möchten. - Wertvolle Verweise auf Detailinformationen und Forschungsergebnisse aus der technischen Literatur. - Entwickelt in Zusammenarbeit mit der FISITA, der Dachorganisation nationaler Automobil-Ingenieur-Verbände aus 37 Ländern und Vertretung von über 185.000 Ingenieuren aus der Branche. - Erhältlich als stets aktuelle Online-Ressource mit umfassenden Suchfunktionen oder als Print-Ausgabe in sechs Bänden mit über 4.000 Seiten. Ein wichtiges Nachschlagewerk für Bibliotheken und Informationszentren in der Industrie, bei Forschungs- und Schulungseinrichtungen, Fachgesellschaften, Regierungsbehörden und allen Ingenieurstudiengängen. Richtet sich an Fachingenieure und Techniker aus der Industrie, Studenten höherer Semester und Studienabsolventen, Forscher, Dozenten und Ausbilder, Branchenanalysen und Forscher.
Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, Second Edition provides a comprehensive view of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Sections consider the role of alternative fuels such as electricity, alcohol and hydrogen fuel cells, as well as advanced additives and oils in environmentally sustainable transport. Other topics explored include methods of revising engine and vehicle design to improve environmental performance and fuel economy and developments in electric and hybrid vehicle technologies. This reference will provide professionals, engineers and researchers of alternative fuels with an understanding of the latest clean technologies which will help them to advance the field. Those working in environmental and mechanical engineering will benefit from the detailed analysis of the technologies covered, as will fuel suppliers and energy producers seeking to improve the efficiency, sustainability and accessibility of their work. - Provides a fully updated reference with significant technological advances and developments in the sector - Presents analyses on the latest advances in electronic systems for emissions control, autonomous systems, artificial intelligence and legislative requirements - Includes a strong focus on updated climate change predictions and consequences, helping the reader work towards ambitious 2050 climate change goals for the automotive industry
In this book, the authors present and discuss the characteristics, performance and environmental impacts of diesel fuels. Topics include the effects of diesel fuel composition and properties on engine performance and pollutant emissions; biodiesel production from alternative feedstocks in Brazil; development of dual fuel combustion models for direct injected heavy duty diesel engines; the molecular properties of some diesel fuel components and their biodegradation; the effect of oxygen additives on the performance and combustion of diesel engines; contrasting the life-cycle performance of conventional and alternative diesel fuels; and the impact of ethyl-tert-butyl ether (ETBE) addition to diesel oil.
The first two editions of this title, published by SAE International in 1990 and 1995, have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited new edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine. This book pulls together in a single, extensively referenced volume, the three different but related topics of automotive fuels, fuel additives, and engines, and shows how all three areas work together. It includes a brief history of automotive fuels development, followed by chapters on automotive fuels manufacture from crude oil and other fossil sources. One chapter is dedicated to the manufacture of automotive fuels and fuel blending components from renewable sources. The safe handling, transport, and storage of fuels, from all sources, are covered. New combustion systems to achieve reduced emissions and increased efficiency are discussed, and the way in which the fuels’ physical and chemical characteristics affect these combustion processes and the emissions produced are included. There is also discussion on engine fuel system development and how these different systems affect the corresponding fuel requirements. Because the book is for a global market, fuel system technologies that only exist in the legacy fleet in some markets are included. The way in which fuel requirements are developed and specified is discussed. This covers test methods from simple laboratory bench tests, through engine testing, and long-term test procedures.
Non-uniform combustion, as encountered in diesel and gas turbine engines, furnaces, and boilers, is responsible for the conversion of fossil fuel to energy and also for the corresponding formation of pollutants. In spite of great research efforts in the past, the mechanism of non-uniform combustion has remained less explored than that of other combustion types, since it consists of many, mostly transient processes which influence each other. In view of this background, a group research project, "Exploration of Combustion Mechanism", was established to explore the mechanism of combustion, especially that of diffusive combustion, and also to find efficient ways to control the combustion process for better utilization of fuel and the reduction of pollutant emission. The group research was started, after preparatory activity of 2 years, in April 1988, for a period of 3 years, as a project with a Grant-in-Aid for Scientific Research of Priority Area subsidized by the Ministry of Education, Science and Culture of Japan. The entire group of 43 members was set up as an organizing committee of 13 members, and five research groups, consisting of 36 members. The research groups were: (1) Steady combustion, (2) Unsteady spray combustion, (3) Control of combustion, (4) Chemistry of combustion, and (5) Effects of fuels. At the beginning of the project it was agreed that we should pursue the mechanism of combustion from a scientific viewpoint, namely, the target of the project was to obtain the fundamentals, or "know why", rather than "know how" of combustion.
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
This research book provides state-of-the-art advances in several areas of energy generation from, and environmental impact of, fuels and biofuels. It also presents novel developments in the areas of biofuels and products from various feedstock materials along with thermal management, emission control and environmental issues. Availability of clean and sustainable energy is of paramount importance in all applications of energy, power, mobility and propulsion. This book is written by internationally renowned experts from around the globe. They provide the latest innovations in cleaner energy utilization for a wide range of devices. The energy and environment sustainability requires a multipronged approach involving development and utilization of new and renewable fuels, design of fuel-flexible combustion systems and novel and environmentally friendly technologies for improved fuel use. This book serves as a good reference for practicing engineers, educators and research professionals.
This volume documents the proceedings of the Symposium on Emissions from Continuous Combustion Systems that was held at the General Motors Research Laboratories, Warren, Michigan on September 27 and 28, 1971. This symposium was the fifteenth in an annual series presented by the Research Laboratories. Each symposium has covered a different technical discipline. To be selected as the theme of a symposium, the subject must be timely and of vital interest to General Motors as well as to the technical community at large. For each symposium, the practice is to solicit papers at the forefront of research from recognized authorities in the technical discipline of interest. Approximately sixty scientists and engineers from academic, government and industrial circles in this country and abroad are then invited to join about an equal number of General Motors technical personnel to discuss freely the commissioned papers. The technical portion of the meeting is supplemented by social functions at which ample time is afforded for informal exchanges of ideas amongst the participants. By such a direct interaction of a small and select group of informed participants, it is hoped to extend the boundaries of research in the selected technical field.