Download Free The Industrial Sodium Cooled Fast Reactor Book in PDF and EPUB Free Download. You can read online The Industrial Sodium Cooled Fast Reactor and write the review.

This book is a complete update of the classic 1981 FAST BREEDER REACTORS textbook authored by Alan E. Waltar and Albert B. Reynolds, which , along with the Russian translation, served as a major reference book for fast reactors systems. Major updates include transmutation physics (a key technology to substantially ameliorate issues associated with the storage of high-level nuclear waste ), advances in fuels and materials technology (including metal fuels and cladding materials capable of high-temperature and high burnup), and new approaches to reactor safety (including passive safety technology), New chapters on gas-cooled and lead-cooled fast spectrum reactors are also included. Key international experts contributing to the text include Chaim Braun, (Stanford University) Ronald Omberg, (Pacific Northwest National Laboratory, Massimo Salvatores (CEA, France), Baldev Raj, (Indira Gandhi Center for Atomic Research, India) , John Sackett (Argonne National Laboratory), Kevan Weaver, (TerraPower Corporation) ,James Seinicki(Argonne National Laboratory). Russell Stachowski (General Electric), Toshikazu Takeda (University of Fukui, Japan), and Yoshitaka Chikazawa (Japan Atomic Energy Agency).
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area
"Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.
This publication presents both an overview and detailed information on more than 150 experimental facilities being used for developing and deploying innovative liquid metal-cooled (sodium, lead and lead-bismuth) fast neutron systems, both critical and subcritical. Facilities, both under construction and those in operation are considered. It is expected that by providing the end users with detailed information on existing and future experimental facilities able to support innovative liquid metal cooled fast neutron systems, the publication will facilitate cooperation between organizations and knowledge transfer. An overview of the existing and future experimental facilities is presented in the body text of this publication. The profiles of all facilities in the form of individual papers are available on the attached CD-ROM and in the related on-line database maintained by the IAEA Catalogue of Facilities in Support of Liquid Metal-cooled Fast Neutron Systems (LMFNS Catalogue).
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. - Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors - Includes new trends and developments since the first publication, as well as brand new case studies and appendices - Covers the latest research, developments and design information surrounding generation IV nuclear reactors
Presents a survey of worldwide experience gained with fast breeder reactor design, development and operation. Coverage includes state of the art of liquid metal fast reactor development; lead-bismuth cooled (LBC) ship reactor operation experience and LBC fast power reactor development; and treatment and disposal of spent sodium.
Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation.This book critically reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities. Initial sections introduce the complex field of nuclear corrosion science, with detailed chapters on the different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them. This is complemented by reviews of monitoring and control methodologies, as well as modelling and lifetime prediction approaches. Given that corrosion is an applied science, the final sections review corrosion issues across the range of current and next-generation nuclear reactors, and across such nuclear applications as fuel reprocessing facilities, radioactive waste storage and geological disposal systems.With its distinguished editor and international team of expert contributors, Nuclear corrosion science and engineering is an invaluable reference for nuclear metallurgists, materials scientists and engineers, as well as nuclear facility operators, regulators and consultants, and researchers and academics in this field. - Comprehensively reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities - Chapters assess different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them - Considers monitoring and control methodologies, as well as modelling and lifetime prediction approaches
For the first time a book has been written on the technological and scientific knowledge, acquired during, buiding , operation and even dismantling of the Superphenix plant. This reactor remains today the most powerful sodium fast breeder reactor operated in the world.(1200 MWe). The last fast breeder reactor operated in the world is BN 800 in Russia that reached his nominal power (800 MWe) in 2016. Joel Guidez began his career in the field of sodium-cooled fast reactors after leaving Ecole Centrale-Paris, in 1973. He has held various positions at Cadarache, Phenix and Superphenix, including as the head of the thermal hydraulic laboratory conducting tests for Phenix, Superphenix and the EFR European Fast Reactor project. He was also head of the OSIRIS research reactor, located at SACLAY, and of the HFR European Commission reactor, located in the Netherlands and spent two years as nuclear attaché at the French embassy in Berlin. His 2012 book “Phenix: the experience feedback” was translated into English and republished in 2013, and this new book on Superphenix is in the same spirit of thematic analysis of a reactor experience feedback. Gérard Prêle graduated from the Ecole Centrale-Lyon and entered EDF and the field of sodium-cooled fast reactors in 1983. In 1985 he joined Superphenix, where he was a duty engineer and was later in charge of safety. He has held various positions at Superphenix and Phenix and was a fast neutron reactor (SFR) engineer at the EDF Centre Lyonnais d’Ingénierie (CLI). He worked as Safety Security Environment and Radiation Protection Mission head in Superphenix at the beginning of dismantling and then in the field of PWR for two years. Since 2006 he has been involved in the Gen IV and the SFR/Astrid projects. Today, as an SFR/system and operations expert, one of his major roles is assisting the CEA in the preliminary design of the ASTRID reactor.
Super Light Water Reactors and Super Fast Reactors provides an overview of the design and analysis of nuclear power reactors. Readers will gain the understanding of the conceptual design elements and specific analysis methods of supercritical-pressure light water cooled reactors. Nuclear fuel, reactor core, plant control, plant stand-up and stability are among the topics discussed, in addition to safety system and safety analysis parameters. Providing the fundamentals of reactor design criteria and analysis, this volume is a useful reference to engineers, industry professionals, and graduate students involved with nuclear engineering and energy technology.