Download Free The Imo Compendium Book in PDF and EPUB Free Download. You can read online The Imo Compendium and write the review.

"The IMO Compendium" is the ultimate collection of challenging high-school-level mathematics problems and is an invaluable resource not only for high-school students preparing for mathematics competitions, but for anyone who loves and appreciates mathematics. The International Mathematical Olympiad (IMO), nearing its 50th anniversary, has become the most popular and prestigious competition for high-school students interested in mathematics. Only six students from each participating country are given the honor of participating in this competition every year. The IMO represents not only a great opportunity to tackle interesting and challenging mathematics problems, it also offers a way for high school students to measure up with students from the rest of the world. Until the first edition of this book appearing in 2006, it has been almost impossible to obtain a complete collection of the problems proposed at the IMO in book form. "The IMO Compendium" is the result of a collaboration between four former IMO participants from Yugoslavia, now Serbia and Montenegro, to rescue these problems from old and scattered manuscripts, and produce the ultimate source of IMO practice problems. This book attempts to gather all the problems and solutions appearing on the IMO through 2009. This second edition contains 143 new problems, picking up where the 1959-2004 edition has left off.
This is the ultimate collection of challenging high-school-level mathematics problems. It is the result of a two year long collaboration to rescue these problems from old and scattered manuscripts, and produce the definitive source of IMO practice problems in book form for the first time. This book attempts to gather all the problems and solutions appearing on the IMO and contains a grand total of 1900 problems. It is an invaluable resource for high-school students preparing for mathematics competitions, and for anyone who loves math.
Mathematical Olympiad Treasures aims at building a bridge between ordinary high school exercises and more sophisticated, intricate and abstract concepts in undergraduate mathematics. The book contains a stimulating collection of problems in the subjects of algebra, geometry, trigonometry, number theory and combinatorics. While it may be considered a sequel to "Mathematical Olympiad Challenges," the focus is on engaging a wider audience to apply techniques and strategies to real-world problems. Throughout the book students are encouraged to express their ideas, conjectures, and conclusions in writing. The goal is to help readers develop a host of new mathematical tools that will be useful beyond the classroom and in a number of disciplines.
In July 2009 Germany hosted the 50th International Mathematical Olympiad (IMO). For the very first time the number of participating countries exceeded 100, with 104 countries from all continents. Celebrating the 50th anniversary of the IMO provides an ideal opportunity to look back over the past five decades and to review its development to become a worldwide event. This book is a report about the 50th IMO as well as the IMO history. A lot of data about all the 50 IMOs are included. We list the most successful contestants, the results of the 50 Olympiads and the 112 countries that have ever taken part. It is impressive to see that many of the world’s leading research mathematicians were among the most successful IMO participants in their youth. Six of them gave presentations at a special celebration: Bollobás, Gowers, Lovász, Smirnov, Tao and Yoccoz. This book is aimed at students in the IMO age group and all those who have interest in this worldwide leading competition for highschool students.
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
The Kenneth May Lectures have never before been published in book form Important contributions to the history of mathematics by well-known historians of science Should appeal to a wide audience due to its subject area and accessibility
The importance of mathematics competitions has been widely recognised for three reasons: they help to develop imaginative capacity and thinking skills whose value far transcends mathematics; they constitute the most effective way of discovering and nurturing mathematical talent; and they provide a means to combat the prevalent false image of mathematics held by high school students, as either a fearsomely difficult or a dull and uncreative subject. This book provides a comprehensive training resource for competitions from local and provincial to national Olympiad level, containing hundreds of diagrams, and graced by many light-hearted cartoons. It features a large collection of what mathematicians call "beautiful" problems - non-routine, provocative, fascinating, and challenging problems, often with elegant solutions. It features careful, systematic exposition of a selection of the most important topics encountered in mathematics competitions, assuming little prior knowledge. Geometry, trigonometry, mathematical induction, inequalities, Diophantine equations, number theory, sequences and series, the binomial theorem, and combinatorics - are all developed in a gentle but lively manner, liberally illustrated with examples, and consistently motivated by attractive "appetiser" problems, whose solution appears after the relevant theory has been expounded. Each chapter is presented as a "toolchest" of instruments designed for cracking the problems collected at the end of the chapter. Other topics, such as algebra, co-ordinate geometry, functional equations and probability, are introduced and elucidated in the posing and solving of the large collection of miscellaneous problems in the final toolchest. An unusual feature of this book is the attention paid throughout to the history of mathematics - the origins of the ideas, the terminology and some of the problems, and the celebration of mathematics as a multicultural, cooperative human achievement. As a bonus the aspiring "mathlete" may encounter, in the most enjoyable way possible, many of the topics that form the core of the standard school curriculum.
This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside's lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas.
This unique book presents mathematical competition problems primarily aimed at upper elementary school students, but are challenging for students at any age. These problems are drawn from the complete papers of the legendary Leningrad Mathematical Olympiads that were presented to the city’s Grade Five students. The period covered is between 1979 – the earliest year for which relevant records could be retrieved – and 1992, when the former Soviet Union was dissolved. The respective chapters reflect the famous four-step approach to problem solving developed by the great Hungarian mathematics educator Gyorgy Pólya. In Chapter One, the Grade Five Competition problems from the Leningrad Mathematical Olympiads from 1979 to 1992 are presented in chronological order. In Chapter Two, the 83 problems are loosely divided into 26 sets of three or four related problems, and an example is provided for each one. Chapter Three provides full solutions to all problems, while Chapter Four offers generalizations of the problems. This book can be used by any mathematically advanced student at the upper elementary school level. Teachers and organizers of outreach activities such as mathematical circles will also find this book useful. But the primary value of the book lies in the problems themselves, which were crafted by experts; therefore, anyone interested in problem solving will find this book a welcome addition to their library./div