Download Free The Hydraulic State Book in PDF and EPUB Free Download. You can read online The Hydraulic State and write the review.

The Hydraulic State explores the hydraulic engineering technology underlying water system constructions of many of the ancient World Heritage sites in South America, the Middle East and Asia as used in their urban and agricultural water supply systems. Using a range of methods and techniques, some new to archaeology, Ortloff analyzes various ancient water systems such as agricultural field system designs known in ancient Peruvian and Bolivian Andean societies, water management at Nabataean Petra, the Roman Pont du Garde water distribution castellum, the Minoan site of Knossos and the water systems of dynastic (and modern) China, particularly the Grand Canal and early water systems designed to control flood episodes. In doing so the book greatly increases our understanding of the hydraulic/hydrological engineering of ancient societies through the application of Complexity Theory, Similitude Theory and Computational Fluid Dynamics (CFD) analysis, as well as traditional archaeological analysis methods. Serving to highlight the engineering science behind water structures of the ancient World Heritage sites discussed, this book will be of interest to archaeologists working on landscape archaeology, urbanism, agriculture and water management.
In Hydraulic City Nikhil Anand explores the politics of Mumbai's water infrastructure to demonstrate how citizenship emerges through the continuous efforts to control, maintain, and manage the city's water. Through extensive ethnographic fieldwork in Mumbai's settlements, Anand found that Mumbai's water flows, not through a static collection of pipes and valves, but through a dynamic infrastructure built on the relations between residents, plumbers, politicians, engineers, and the 3,000 miles of pipe that bind them. In addition to distributing water, the public water network often reinforces social identities and the exclusion of marginalized groups, as only those actively recognized by city agencies receive legitimate water services. This form of recognition—what Anand calls "hydraulic citizenship"—is incremental, intermittent, and reversible. It provides residents an important access point through which they can make demands on the state for other public services such as sanitation and education. Tying the ways Mumbai's poorer residents are seen by the state to their historic, political, and material relations with water pipes, the book highlights the critical role infrastructures play in consolidating civic and social belonging in the city.
Hydraulic engineering of dams and their appurtenant structures counts among the essential tasks to successfully design safe water-retaining reservoirs for hydroelectric power generation, flood retention, and irrigation and water supply demands. In view of climate change, especially dams and reservoirs, among other water infrastructure, will and have to play an even more important role than in the past as part of necessary mitigation and adaptation measures to satisfy vital needs in water supply, renewable energy and food worldwide as expressed in the Sustainable Development Goals of the United Nations. This book deals with the major hydraulic aspects of dam engineering considering recent developments in research and construction, namely overflow, conveyance and dissipations structures of spillways, river diversion facilities during construction, bottom and low-level outlets as well as intake structures. Furthermore, the book covers reservoir sedimentation, impulse waves and dambreak waves, which are relevant topics in view of sustainable and safe operation of reservoirs. The book is richly illustrated with photographs, highlighting the various appurtenant structures of dams addressed in the book chapters, as well as figures and diagrams showing important relations among the governing parameters of a certain phenomenon. An extensive literature review along with an updated bibliography complete this book.
Concise yet thorough look at hydraulics and hydraulic engineering. Includes many worked examples, case studies and end-of-chapter exercises.
Draws the Link Between Service Knowledge and the Advanced Theory of Fluid Power Providing the fundamental knowledge on how a typical hydraulic system generates, delivers, and deploys fluid power, Basics of Hydraulic Systems highlights the key configuration features of the components that are needed to support their functiona
Energy dissipators are an important element of hydraulic structures as transition between the highly explosive high velocity flow and the sensitive tailwater. This volume examines energy dissipators mainly in connection with dam structures and provides a review of design methods. It includes topics such as hydraulic jump, stilling basins, ski jumps and plunge pools. It also introduces a general account of various methods of dissipation, as well as the governing flow mechanisms.
This research seeks to close an essential research gap – the understanding of the water management strategies of the Maya in pre-Hispanic times. It focuses on the archaeological investigation of the hydraulic system of Uxul, a medium-sized Maya centre in the south of the state of Campeche, Mexico.
HYDRAULIC FLUID POWER LEARN MORE ABOUT HYDRAULIC TECHNOLOGY IN HYDRAULIC SYSTEMS DESIGN WITH THIS COMPREHENSIVE RESOURCE Hydraulic Fluid Power provides readers with an original approach to hydraulic technology education that focuses on the design of complete hydraulic systems. Accomplished authors and researchers Andrea Vacca and Germano Franzoni begin by describing the foundational principles of hydraulics and the basic physical components of hydraulics systems. They go on to walk readers through the most practical and useful system concepts for controlling hydraulic functions in modern, state-of-the-art systems. Written in an approachable and accessible style, the book’s concepts are classified, analyzed, presented, and compared on a system level. The book also provides readers with the basic and advanced tools required to understand how hydraulic circuit design affects the operation of the equipment in which it’s found, focusing on the energy performance and control features of each design architecture. Readers will also learn how to choose the best design solution for any application. Readers of Hydraulic Fluid Power will benefit from: Approaching hydraulic fluid power concepts from an “outside-in” perspective, emphasizing a problem-solving orientation Abundant numerical examples and end-of-chapter problems designed to aid the reader in learning and retaining the material A balance between academic and practical content derived from the authors’ experience in both academia and industry Strong coverage of the fundamentals of hydraulic systems, including the equations and properties of hydraulic fluids Hydraulic Fluid Power is perfect for undergraduate and graduate students of mechanical, agricultural, and aerospace engineering, as well as engineers designing hydraulic components, mobile machineries, or industrial systems.