Download Free The Hp Spaces Of An Annulus Book in PDF and EPUB Free Download. You can read online The Hp Spaces Of An Annulus and write the review.

The volume contains selected papers of the Spectral Function Theory seminar, Leningrad Branch of Steklov Mathematical Institute. The papers are mostly devoted to the theory of Toeplitz and model operators. These subjects are considered here from various points of view. Several papers concern the relationships of Toeplitz operators to weighted polynomial approximation. Namely, two papers by B. Solomyak and A. Volberg intensively treat the problem of spectra! multiplicity f~r analytic Toeplitz operators (which are, in fact, multiplication operators) and my paper can serve as an introduction to the problem. This theme of multiplicities is continued in a paper by V. Vasyunin where the multiplicity of the spectrum is computed for Hilbert space contractions with finite defect indices. V. Peller's paper deals with a perturbation theory problem for Toeplitz operators. In a paper by D. Yakubovich a new similarity model for a class of Toeplitz operators is constructed. S. Treil' presents a survey of a part of spectral function theory for vector valued function (Szego-Kolmogorov extreme prob!ems for operator weights, bases of vector rational functions, estimations of Hilbert transform with respect to operator weights, the operator corona problem). As a concluding remark I dare only note that the whole collection convinces us once more without a doubt of the fruitfullness of the natural union of operator theory and complex analysis (if at all the union of these fields is at all different from their intersection).
This book is the proceeding of the International Workshop on Operator Theory and Applications (IWOTA) held in July 2018 in Shanghai, China. It consists of original papers, surveys and expository articles in the broad areas of operator theory, operator algebras and noncommutative topology. Its goal is to give graduate students and researchers a relatively comprehensive overview of the current status of research in the relevant fields. The book is also a special volume dedicated to the memory of Ronald G. Douglas who passed away on February 27, 2018 at the age of 79. Many of the contributors are Douglas’ students and past collaborators. Their articles attest and commemorate his life-long contribution and influence to these fields.
Together with the companion volume by the same author, Operators, Functions, and Systems: An Easy Reading. Volume 1: Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, Vol. 92, AMS, 2002, this unique work combines four major topics of modern analysis and its applications: A. Hardy classes of holomorphic functions, B. Spectral theory of Hankel and Toeplitz operators, C. Function models for linear operators and free interpolations, and D. Infinite-dimensional system theory and signal processing. This volume contains Parts C and D. Function models for linear operators and free interpolations: This is a universal topic and, indeed, is the most influential operator theory technique in the post-spectral-theorem era. In this book, its capacity is tested by solving generalized Carleson-type interpolation problems. Infinite-dimensional system theory and signal processing: This topic is the touchstone of the three previously developed techniques. The presence of this applied topic in a pure mathematics environment reflects important changes in the mathematical landscape of the last 20 years, in that the role of the main consumer and customer of harmonic, complex, and operator analysis has more and more passed from differential equations, scattering theory, and probability to control theory and signal processing. This and the companion volume are geared toward a wide audience of readers, from graduate students to professional mathematicians. They develop an elementary approach to the subject while retaining an expert level that can be applied in advanced analysis and selected applications.
An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators, and Clark measures. The second volume focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.
This is volume 1 of a 2 volume set.
This handbook concerns the subject of holomorphic function spaces and operators acting on them. Topics include Bergman spaces, Hardy spaces, Besov/Sobolev spaces, Fock spaces, and the space of Dirichlet series. Operators discussed in the book include Toeplitz operators, Hankel operators, composition operators, and Cowen-Douglas class operators
If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .