Download Free The History Of Mathematics From Antiquity To The Present Book in PDF and EPUB Free Download. You can read online The History Of Mathematics From Antiquity To The Present and write the review.

This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.
The controversial matters surrounding the notion of anachronism are difficult ones: they have been broached by literary and art critics, by philosophers, as well as by historians of science. This book adopts a bottom-up approach to the many problems concerning anachronism in the history of mathematics. Some of the leading scholars in the field of history of mathematics reflect on the applicability of present-day mathematical language, concepts, standards, disciplinary boundaries, indeed notions of mathematics itself, to well-chosen historical case studies belonging to the mathematics of the past, in European and non-European cultures. A detailed introduction describes the key themes and binds the various chapters together. The interdisciplinary and transcultural approach adopted allows this volume to cover topics important for history of mathematics, history of the physical sciences, history of science, philosophy of mathematics, history of philosophy, methodology of history, non-European science, and the transmission of mathematical knowledge across cultures.
"From the time of Pythagoras, we have been tempted to treat numbers as the ultimate or only truth. This book tells the history of that habit of thought. But more, it argues that the logic of counting sacrifices much of what makes us human, and that we have a responsibility to match the objects of our attention to the forms of knowledge that do them justice. Humans have extended the insights and methods of number and mathematics to more and more aspects of the world, even to their gods and their religions.Today those powers are greater than ever, as computation is applied to virtually every aspect of human activity.But the rules of mathematics do not strictly apply to many things-from elementary particles to people-in the world.By subjecting such things to the laws of logic and mathematics, we gain some kinds of knowledge, but we also lose others. How do our choices about what parts of the world to subject to the logics of mathematics affect how we live and how we die?This question is rarely asked, but it is urgent, because the sciences built upon those laws now govern so much of our knowledge, from physics to psychology.Number and Knowledge sets out to ask it. In chapters proceeding chronologically from Ancient Greek philosophy and the rise of monotheistic religions to the emergence of modern physics and economics, the book traces how ideals, practices, and habits of thought formed over millennia have turned number into the foundation-stone of human claims to knowledge and certainty.But the book is also a philosophical and poetic exhortation to take responsibility for that history, for the knowledge it has produced, and for the many aspects of the world and of humanity that it ignores or endangers.To understand what can be counted and what can't is to embrace the ethics of purposeful knowing"--
"The History of Mathematics: An Introduction," Sixth Edition, is written for the one- or two-semester math history course taken by juniors or seniors, and covers the history behind the topics typically covered in an undergraduate math curriculum or in elementary schools or high schools. Elegantly written in David Burton's imitable prose, this classic text provides rich historical context to the mathematics that undergrad math and math education majors encounter every day. Burton illuminates the people, stories, and social context behind mathematics'greatest historical advances while maintaining appropriate focus on the mathematical concepts themselves. Its wealth of information, mathematical and historical accuracy, and renowned presentation make The History of Mathematics: An Introduction, Sixth Edition a valuable resource that teachers and students will want as part of a permanent library.
This monumental book traces the origins and development of mathematics in the ancient Middle East, from its earliest beginnings in the fourth millennium BCE to the end of indigenous intellectual culture in the second century BCE when cuneiform writing was gradually abandoned. Eleanor Robson offers a history like no other, examining ancient mathematics within its broader social, political, economic, and religious contexts, and showing that mathematics was not just an abstract discipline for elites but a key component in ordering society and understanding the world. The region of modern-day Iraq is uniquely rich in evidence for ancient mathematics because its prehistoric inhabitants wrote on clay tablets, many hundreds of thousands of which have been archaeologically excavated, deciphered, and translated. Drawing from these and a wealth of other textual and archaeological evidence, Robson gives an extraordinarily detailed picture of how mathematical ideas and practices were conceived, used, and taught during this period. She challenges the prevailing view that they were merely the simplistic precursors of classical Greek mathematics, and explains how the prevailing view came to be. Robson reveals the true sophistication and beauty of ancient Middle Eastern mathematics as it evolved over three thousand years, from the earliest beginnings of recorded accounting to complex mathematical astronomy. Every chapter provides detailed information on sources, and the book includes an appendix on all mathematical cuneiform tablets published before 2007.
A comprehensive look at four of the most famous problems in mathematics Tales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems—squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle—have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs—which demonstrated the impossibility of solving them using only a compass and straightedge—depended on and resulted in the growth of mathematics. Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viète, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems. Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries.
"For Ivor Grattan-Guinness . . . the story of how numbers were invented and harnessed is a passionate, physical saga."--"The New Yorker." The author charts the growth of mathematics through the centuries and describes the evolution of arithmetic and geometry, trigonometry, and other disciplines.
What exactly is analysis? What are infinitely small or infinitely large quantities? What are indivisibles and infinitesimals? What are real numbers, continuity, the continuum, differentials, and integrals? You’ll find the answers to these and other questions in this unique book! It explains in detail the origins and evolution of this important branch of mathematics, which Euler dubbed the “analysis of the infinite.” A wealth of diagrams, tables, color images and figures serve to illustrate the fascinating history of analysis from Antiquity to the present. Further, the content is presented in connection with the historical and cultural events of the respective epochs, the lives of the scholars seeking knowledge, and insights into the subfields of analysis they created and shaped, as well as the applications in virtually every aspect of modern life that were made possible by analysis.
This is the first comprehensive International Handbook on the History of Mathematics Education, covering a wide spectrum of epochs and civilizations, countries and cultures. Until now, much of the research into the rich and varied history of mathematics education has remained inaccessible to the vast majority of scholars, not least because it has been written in the language, and for readers, of an individual country. And yet a historical overview, however brief, has become an indispensable element of nearly every dissertation and scholarly article. This handbook provides, for the first time, a comprehensive and systematic aid for researchers around the world in finding the information they need about historical developments in mathematics education, not only in their own countries, but globally as well. Although written primarily for mathematics educators, this handbook will also be of interest to researchers of the history of education in general, as well as specialists in cultural and even social history.