Download Free The History Of Mathematics A Source Based Approach Volume 1 Book in PDF and EPUB Free Download. You can read online The History Of Mathematics A Source Based Approach Volume 1 and write the review.

The History of Mathematics: A Source-Based Approach is a comprehensive history of the development of mathematics. This, the first volume of the two-volume set, takes readers from the beginning of counting in prehistory to 1600 and the threshold of the discovery of calculus. It is notable for the extensive engagement with original—primary and secondary—source material. The coverage is worldwide, and embraces developments, including education, in Egypt, Mesopotamia, Greece, China, India, the Islamic world and Europe. The emphasis on astronomy and its historical relationship to mathematics is new, and the presentation of every topic is informed by the most recent scholarship in the field. The two-volume set was designed as a textbook for the authors' acclaimed year-long course at the Open University. It is, in addition to being an innovative and insightful textbook, an invaluable resource for students and scholars of the history of mathematics. The authors, each among the most distinguished mathematical historians in the world, have produced over fifty books and earned scholarly and expository prizes from the major mathematical societies of the English-speaking world.
The History of Mathematics: A Source-Based Approach is a comprehensive history of the development of mathematics. This, the second volume of a two-volume set, takes the reader from the invention of the calculus to the beginning of the twentieth century. The initial discoverers of calculus are given thorough investigation, and special attention is also paid to Newton's Principia. The eighteenth century is presented as primarily a period of the development of calculus, particularly in differential equations and applications of mathematics. Mathematics blossomed in the nineteenth century and the book explores progress in geometry, analysis, foundations, algebra, and applied mathematics, especially celestial mechanics. The approach throughout is markedly historiographic: How do we know what we know? How do we read the original documents? What are the institutions supporting mathematics? Who are the people of mathematics? The reader learns not only the history of mathematics, but also how to think like a historian. The two-volume set was designed as a textbook for the authors' acclaimed year-long course at the Open University. It is, in addition to being an innovative and insightful textbook, an invaluable resource for students and scholars of the history of mathematics. The authors, each among the most distinguished mathematical historians in the world, have produced over fifty books and earned scholarly and expository prizes from the major mathematical societies of the English-speaking world.
Presupposes a knowledge of college level mathematics but is accessible to the average reader through its consistent treatment of mathematical structure with a strict adherence to historical perspective and detail. The material is arranged chronologically beginning with archaic origins and covers Egyptian, Mesopotamian, Greek, Chinese, Indian, Arabic and European contributions done to the nineteenth century and present day. There are revised references and bibliographies and revised and expanded chapters on the nineteeth and twentieth centuries.
These selected mathematical writings cover the years when the foundations were laid for the theory of numbers, analytic geometry, and the calculus. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The controversial matters surrounding the notion of anachronism are difficult ones: they have been broached by literary and art critics, by philosophers, as well as by historians of science. This book adopts a bottom-up approach to the many problems concerning anachronism in the history of mathematics. Some of the leading scholars in the field of history of mathematics reflect on the applicability of present-day mathematical language, concepts, standards, disciplinary boundaries, indeed notions of mathematics itself, to well-chosen historical case studies belonging to the mathematics of the past, in European and non-European cultures. A detailed introduction describes the key themes and binds the various chapters together. The interdisciplinary and transcultural approach adopted allows this volume to cover topics important for history of mathematics, history of the physical sciences, history of science, philosophy of mathematics, history of philosophy, methodology of history, non-European science, and the transmission of mathematical knowledge across cultures.
This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition
An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo—whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp—Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau’s Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird’s-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.
Medieval Europe was a meeting place for the Christian, Jewish, and Islamic civilizations, and the fertile intellectual exchange of these cultures can be seen in the mathematical developments of the time. This sourcebook presents original Latin, Hebrew, and Arabic sources of medieval mathematics, and shows their cross-cultural influences. Most of the Hebrew and Arabic sources appear here in translation for the first time. Readers will discover key mathematical revelations, foundational texts, and sophisticated writings by Latin, Hebrew, and Arabic-speaking mathematicians, including Abner of Burgos's elegant arguments proving results on the conchoid—a curve previously unknown in medieval Europe; Levi ben Gershon’s use of mathematical induction in combinatorial proofs; Al-Mu’taman Ibn Hūd’s extensive survey of mathematics, which included proofs of Heron’s Theorem and Ceva’s Theorem; and Muhyī al-Dīn al-Maghribī’s interesting proof of Euclid’s parallel postulate. The book includes a general introduction, section introductions, footnotes, and references. The Sourcebook in the Mathematics of Medieval Europe and North Africa will be indispensable to anyone seeking out the important historical sources of premodern mathematics.
"For Ivor Grattan-Guinness . . . the story of how numbers were invented and harnessed is a passionate, physical saga."--"The New Yorker." The author charts the growth of mathematics through the centuries and describes the evolution of arithmetic and geometry, trigonometry, and other disciplines.