Download Free The History Of Econophysics Emergence Book in PDF and EPUB Free Download. You can read online The History Of Econophysics Emergence and write the review.

Financial economics and mathematical finance are the two traditional scientific disciplines that constitute modern financial theory. Although they still largely dominate modern financial theory, in the past few years a new “player” has increasingly been making itself felt and could lead to a rethinking of some of the theoretical foundations of modern financial theory. This new player is econophysics. Econophysics is a very recent movement that is beginning to interest increasing numbers of financial practionners. To date, no history of econophysics has been produced. This article aims at filling both this gap. It analyses the theoretical foundations of econophysics and their connections with the history of financial economics. It also studies of the reasons underlying the emergence of econophysics and presents the manner in which econophysics has become the third component of modern financial theory.
This book will appeal to the lay-reader with an interest in the history of what is today termed ‘Econophysics’, looking at various works throughout the ages that have led to the emergence of this field. It begins with a discussion of the philosophers and scientists who have contributed to this discipline, before moving on to considering the contributions of different institutions, books, journals and conferences in nurturing the subject.
Empirical laws are rare in economics. This book describes efforts to anchor economic knowledge to invariant empirical laws. It links 17th and 18th century Galilean monetary economists to econophysics, a field that emerged in the mid-1990s. This virtual journey from past to present is charted by episodes on aggregates and empirical primacy. It includes the virtually unknown story of 19th century scholars who, by searching for a stricter mathematical approach, paved the way to an ‘engineering’ view of economics. Then there are celebrities like Pareto and his first empirical law governing the distribution of wealth. Pareto and Amoroso sparked a debate on the skewed distribution that spanned decades, ranging from finance to market transformations, to econophysics, with its concepts and tools inherited from statistical physics. The last stage of the journey goes through econophysics and the recent gradual advances it has made, which show how its position vis-à-vis economics has been changing.
Filling the gap for an up-to-date textbook in this relatively new interdisciplinary research field, this volume provides readers with a thorough and comprehensive introduction. Based on extensive teaching experience, it includes numerous worked examples and highlights in special biographical boxes some of the most outstanding personalities and their contributions to both physics and economics. The whole is rounded off by several appendices containing important background material.
This book concerns the use of concepts from statistical physics in the description of financial systems. The authors illustrate the scaling concepts used in probability theory, critical phenomena, and fully developed turbulent fluids. These concepts are then applied to financial time series. The authors also present a stochastic model that displays several of the statistical properties observed in empirical data. Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling permit an understanding of the global behaviour of economic systems without first having to work out a detailed microscopic description of the system. Physicists will find the application of statistical physics concepts to economic systems interesting. Economists and workers in the financial world will find useful the presentation of empirical analysis methods and well-formulated theoretical tools that might help describe systems composed of a huge number of interacting subsystems.
This monograph examines the domain of classical political economy using the methodologies developed in recent years both by the new discipline of econo-physics and by computing science. This approach is used to re-examine the classical subdivisions of political economy: production, exchange, distribution and finance. The book begins by examining the most basic feature of economic life – production – and asks what it is about physical laws that allows production to take place. How is it that human labour is able to modify the world? It looks at the role that information has played in the process of mass production and the extent to which human labour still remains a key resource. The Ricardian labour theory of value is re-examined in the light of econophysics, presenting agent based models in which the Ricardian theory of value appears as an emergent property. The authors present models giving rise to the class distribution of income, and the long term evolution of profit rates in market economies. Money is analysed using tools drawn both from computer science and the recent Chartalist school of financial theory. Covering a combination of techniques drawn from three areas, classical political economy, theoretical computer science and econophysics, to produce models that deepen our understanding of economic reality, this new title will be of interest to higher level doctoral and research students, as well as scientists working in the field of econophysics.
This book is a course in methods and models rooted in physics and used in modelling economic and social phenomena. It covers the discipline of econophysics, which creates an interface between physics and economics. Besides the main theme, it touches on the theory of complex networks and simulations of social phenomena in general. After a brief historical introduction, the book starts with a list of basic empirical data and proceeds to thorough investigation of mathematical and computer models. Many of the models are based on hypotheses of the behaviour of simplified agents. These comprise strategic thinking, imitation, herding, and the gem of econophysics, the so-called minority game. At the same time, many other models view the economic processes as interactions of inanimate particles. Here, the methods of physics are especially useful. Examples of systems modelled in such a way include books of stock-market orders, and redistribution of wealth among individuals. Network effects are investigated in the interaction of economic agents. The book also describes how to model phenomena like cooperation and emergence of consensus. The book will be of benefit to graduate students and researchers in both Physics and Economics.
This book provides the first extensive analytic comparison between models and results from econophysics and financial economics in an accessible and common vocabulary. Unlike other publications dedicated to econophysics, it situates this field in the evolution of financial economics by laying the foundations for common theoretical framework and models.
The Minority Game is a physicist's attempt to explain market behaviour by the interaction between traders. With a minimal set of ingredients and drastic assumptions, this model reproduces market ecology among different types of traders. Its emphasis is on speculative trading and information flow. The book first describes the philosophy lying behind the conception of the Minority Game in 1997, and includes in particular a discussion about the El Farol bar problem. It then reviews the main steps in later developments, including both the theory and its applications to market phenomena. 'Minority Games' gives a colourful and stylized, but also realistic picture of how financial markets operate.