Download Free The Heterogeneous Equilibria From The Standpoint Of The Phase Rule Book in PDF and EPUB Free Download. You can read online The Heterogeneous Equilibria From The Standpoint Of The Phase Rule and write the review.

Studies in Modern Thermodynamics, 3: Phase Theory: The Thermodynamics of Heterogeneous Equilibria focuses on the processes, methodologies, principles, and approaches employed in the determination of the thermodynamics of heterogeneous equilibria. The publication first elaborates on thermodynamic background, phase rule, and general relations for binary equilibria. Discussions focus on linear contributions, G-curves and phase diagram, function changes, Clapeyron's equation, derivation of phase rule, pressure and temperature, heat capacity, enthalpy, and Gibbs energy. The manuscript then examines demixing, isothermal liquid-vapor equilibria, isobaric equilibria between two mixed states, and isobaric equilibria between unmixed solid and mixed liquid state. Topics include phase diagrams, pure solid component with liquid mixture, equilibrium between two ideal states, calculation of phase diagrams, and types of phase diagram. The text ponders on the interpretation of TX phase diagrams and retrograde equilibrium curves, including retrograde solubility, regions of demixing, excess parameters, and eutectic systems. The publication is a valuable reference for researchers wanting to dig deeper into the thermodynamics of heterogeneous equilibria.
Murry Salby's new book provides an integrated treatment of the processes controlling the Earth-atmosphere system, developed from first principles through a balance of theory and applications. This book builds on Salby's previous book, Fundamentals of Atmospheric Physics. The scope has been expanded into climate, with the presentation streamlined for undergraduates in science, mathematics and engineering. Advanced material, suitable for graduate students and as a resource for researchers, has been retained but distinguished from the basic development. The book provides a conceptual yet quantitative understanding of the controlling influences, integrated through theory and major applications. It leads readers through a methodical development of the diverse physical processes that shape weather, global energetics and climate. End-of-chapter problems of varying difficulty develop student knowledge and its quantitative application, supported by answers and detailed solutions online for instructors.
Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and optimization is analyzed. The relation between the mixture molecular properties, the selection of the thermodynamic model and the process technology that could be applied are discussed. A classification of mixtures, separation process, thermodynamic models and technologies is presented to guide the engineer in the world of separation processes. The phase condition required for a given reacting system is studied at subcritical and supercritical conditions. The four cardinal points of phase equilibrium engineering are: the chemical plant or process, the laboratory, the modeling of phase equilibria and the simulator. The harmonization of all these components to obtain a better design or operation is the ultimate goal of phase equilibrium engineering. - Methodologies are discussed using relevant industrial examples - The molecular nature and composition of the process mixture is given a key role in process decisions - Phase equilibrium diagrams are used as a drawing board for process implementation
Written by a leading practitioner and teacher in the field of ceramic science and engineering, this outstanding text provides advanced undergraduate- and graduate-level students with a comprehensive, up-to-date Introduction to Phase Equilibria in Ceramic Systems. Building upon a concise definition of the phase rule, the book logically proceeds from one- and two-component systems through increasingly complex systems, enabling students to utilize the phase rule in real applications. Unique because of its emphasis on phase diagrams, timely because of the rising importance of ceramic applications, practical because of its pedagogical approach, Introduction to Phase Equilibria in Ceramic Systems offers end-of-chapter review problems, extensive reading lists, a solid thermodynamic foundation and clear perspectives on the special properties of ceramics as compared to metals.This authoritative volume fills a broad gap in the literature, helping undergraduate- and graduate-level students of ceramic engineering and materials science to approach this demanding subject in a rational, confident fashion. In addition, Introduction to Phase Equilibria in Ceramic Systems serves as a valuable supplement to undergraduate-level metallurgy programs.
-- Presents brief historical summaries and biographies of key thermodynamics scientists alongside the fundamentals they were responsible for.
Engineering Chemistry is an interdisciplinary subject offered to undergraduate Engineering students. This book introduces the fundamental concepts in a simple and concise manner and highlights the role of chemistry in the field of engineering. It includes a large number of end-of-chapter exercises that test the student's understanding besides being useful from the examination point of view.
Phase Equilibria: Basic Principles, Applications, Experimental Techniques presents an analytical treatment in the study of the theories and principles of phase equilibria. The book is organized to afford a deep and thorough understanding of such subjects as the method of species model systems; condensed phase-vapor phase equilibria and vapor transport reactions; zone refining techniques; and nonstoichiometry. Physicists, physical chemists, engineers, and materials scientists will find the book a good reference material.