Download Free The Handbook Of Polyhydroxyalkanoates Book in PDF and EPUB Free Download. You can read online The Handbook Of Polyhydroxyalkanoates and write the review.

This second volume of the "Handbook of Polyhydroxyalkanoates (PHA): Kinetics, Bioengineering and Industrial Aspects" focusses on thermodynamic and mathematical considerations of PHA biosynthesis, bioengineering aspects regarding bioreactor design and downstream processing for PHA recovery from microbial biomass. It covers microbial mixed culture processes and includes a strong industry-focused section with chapters on the economics of PHA production, industrial-scale PHA production from sucrose, next generation industrial biotechnology approaches for PHA production based on novel robust production strains, and holistic techno-economic and sustainability considerations on PHA manufacturing. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this book Provides an insight into microbial thermodynamics to reveal the central domain governing in PHA formation, both aerobically and anaerobically. Includes systematic overview of mathematical modelling approaches, starting from low-structured and formal kinetic models until modern tools like metabolic models, cybernetic models and so forth Discusses challenges during scale up of PHA production processes and on development of non-sterile processes and contamination-resistant strains Presents a holistic picture of the current state of PHA research by mixed cultures Reviews the industry-related point of view about current and future trends in PHA production and processing
The Handbook of Polyhydroxyalkanoates (PHA) focusses on and addresses varying facets of PHA biosynthesis and processing, spread across three volumes. The first volume discusses feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. This second volume focusses on thermodynamic and mathematical considerations of PHA biosynthesis, bioengineering aspects regarding bioreactor design and downstream processing for PHA recovery from microbial biomass. It covers microbial mixed culture processes and includes a strong industry-focused section with chapters on the economics of PHA production, industrial-scale PHA production from sucrose, next generation industrial biotechnology approaches for PHA production based on novel robust production strains, and holistic techno-economic and sustainability considerations on PHA manufacturing. Third volume is on the production of functionalized PHA bio-polyesters, the post-synthetic modification of PHA, processing and additive manufacturing of PHA, development and properties of PHA-based (bio)composites and blends, the market potential of PHA and follow-up materials, different bulk- and niche applications of PHA, and the fate and use of spent PHA items. Divided into fourteen chapters, it describes functionalized PHA and PHA modification, processing and their application including degradation of spent PHA-based products and fate of these bio-polyesters during compositing and other disposal strategies. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this set: Presents comprehensive and holistic consideration of these microbial bioplastics in the volumes. Enables reader to learn about microbiological, enzymatic, genetic, synthetic biology, and metabolic aspects of PHA biosynthesis based on the latest scientific discoveries. Discusses design and operate a PHA production plant. Strong focus on post-synthetic modification, preparation of functional PHA and follow-up products, and PHA processing. Covers all related engineering considerations
The first volume of the "Handbook of Polyhydroxyalkanoates (PHA): Microbial Biosynthesis and Feedstocks" focusses on feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this book Covers the intracellular on-goings in PHA-accumulating bacteria Assesses diverse feedstocks to be used as carbon source for PHA production including current knowledge on PHA biosynthesis starting from inexpensive waste feedstocks Summarizes recent relevant results dealing with PHA production from various organic by-products Presents the key elements to understand and fine-tune the microstructure and sequence-controlled molecular architecture of PHA co-polyesters Discusses the use of CO-rich syngas, sourced from various organic waste materials, for PHA biosynthesis
The Handbook of Polyhydroxyalkanoates (PHA) focusses on and addresses varying facets of PHA biosynthesis and processing, spread across three volumes. The first volume discusses feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. This second volume focusses on thermodynamic and mathematical considerations of PHA biosynthesis, bioengineering aspects regarding bioreactor design and downstream processing for PHA recovery from microbial biomass. It covers microbial mixed culture processes and includes a strong industry-focused section with chapters on the economics of PHA production, industrial-scale PHA production from sucrose, next generation industrial biotechnology approaches for PHA production based on novel robust production strains, and holistic techno-economic and sustainability considerations on PHA manufacturing. Third volume is on the production of functionalized PHA bio-polyesters, the post-synthetic modification of PHA, processing and additive manufacturing of PHA, development and properties of PHA-based (bio)composites and blends, the market potential of PHA and follow-up materials, different bulk- and niche applications of PHA, and the fate and use of spent PHA items. Divided into fourteen chapters, it describes functionalized PHA and PHA modification, processing and their application including degradation of spent PHA-based products and fate of these bio-polyesters during compositing and other disposal strategies. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this set: Presents comprehensive and holistic consideration of these microbial bioplastics in the volumes. Enables reader to learn about microbiological, enzymatic, genetic, synthetic biology, and metabolic aspects of PHA biosynthesis based on the latest scientific discoveries. Discusses design and operate a PHA production plant. Strong focus on post-synthetic modification, preparation of functional PHA and follow-up products, and PHA processing. Covers all related engineering considerations
This handbook covers characteristics, processability and application areas of biodegradable polymers, with key polymer family groups discussed. It explores the role of biodegradable polymers in different waste management practices including anaerobic digestion, and considers topics such as the different types of biorefineries for renewable monomers used in producing the building blocks for biodegradable polymers.
The progressive dwindling of fossil resources, coupled with the drastic increase in oil prices, have sparked a feverish activity in search of alternatives based on renewable resources for the production of energy. Given the predominance of petroleum- and carbon-based chemistry for the manufacture of organic chemical commodities, a similar preoccupation has recently generated numerous initiatives aimed at replacing these fossil sources with renewable counterparts. In particular, major efforts are being conducted in the field of polymer science and technology to prepare macromolecular materials based on renewable resources. The concept of the bio-refinery, viz. the rational exploitation of the vegetable biomass in terms of the separation of its components and their utilisation as such, or after suitable chemical modifications, is thus gaining momentum and considerable financial backing from both the public and private sectors. This collection of chapters, each one written by internationally recognised experts in the corresponding field, covers in a comprehensive fashion all the major aspects related to the synthesis, characterization and properties of macromolecular materials prepared using renewable resources as such, or after appropriate modifications. Thus, monomers such as terpenes and furans, oligomers like rosin and tannins, and polymers ranging from cellulose to proteins and including macromolecules synthesized by microbes, are discussed with the purpose of showing the extraordinary variety of materials that can be prepared from their intelligent exploitation. Particular emphasis has been placed on recent advances and imminent perspectives, given the incessantly growing interest that this area is experiencing in both the scientific and technological realms. - Discusses bio-refining with explicit application to materials - Replete with examples of applications of the concept of sustainable development - Presents an impressive variety of novel macromolecular materials
A comprehensive overview of the recent accomplishments in the area of polyhydroxyalkanoates.
Polyhydroxyalkanoates: Biosynthesis, Chemical Structures and Applications opens with an exposé on employing extremophiles as polyhydroxyalkanoate (PHA) producers. The authors suggest that extremophiles may be easily subjected to a long-term continuous cultivation processes, which considerably enhances overall productivity while reducing the energy demand in biopolymer production. Conversely, a range of challenges remain, including improving the metabolic capability of extremophiles, recycling of fermentation broth, various process engineering aspects, and adaptation of bioreactor materials and process controlling devices to conditions shortening their life span. Following this, the enzymes, regulators and genes involved in PHA biosynthesis are analyzed for their potential as an alternative to synthetic polymers. They are synthesized as intracellular carbon and energy storage compounds from over 300 species in the presence of excess carbon and under oxygen, nitrogen or phosphorus limitation, or after pH shifts. This collection goes on to suggest PHA as a promising alternative for petrochemical compounds. The challenges of increasing economic feasibility in the global market, minimizing costs, and improving the polymer yield are reviewed. Additionally, recent research on structural variations of PHAs has been centered on the design, biosynthesis, and properties of biodegradable and biocompatible materials, which can be used for bioengineering. This collection also includes a focus on the roles of polyhydroxyesters and PHAs in the construction of tissue engineering scaffolds, which are used in bone, cartilage, ligament, skin, vascular tissues, neural tissues and skeletal muscles. Their exceptional properties, such as high surface-to-volume ratio, high porosity with very small pore size, and biodegradation have made them gain a lot of attention in this field. The biomedical applications of PHAs are explored, including in-vivo implants, tissue engineering, anticancer agents, drug delivery, biocontrol agents and memory enhancers, as their low acidity allows for minimal risk in usage. In order to enhance its applicability in various fields, the blends and nanocomposites of PHAs are studied and their potential challenges, applications and opportunities are addressed. After which, the industrial and agricultural applications are described, with specific focus on potential applications of PHAs in packaging. Other applications include moulded goods, paper coatings, non-woven fabrics, adhesives, films and performance additives. Recent advances in this area, by means of peer-reviewed literature and patents, are introduced and discussed. Moreover, innovative strategies for the synthesis of novel polymer blends, adequate for food contact applications, are presented.
This book provides the latest technical information on sustainable materials that are feedstocks for additive manufacturing (AM). Topics covered include an up-to-date and extensive overview of raw materials, their chemistry, and functional properties of their commercial versions; a description of the relevant AM processes, products, applications, advantages, and limitations; prices and market data; and a forecast of sustainable materials used in AM, their properties, and applications in the near future. Data included are relative to current commercial products and are presented in easy-to-read tables and charts. Features Highlights up-to-date information and data of actual commercial materials Offers a broad survey of state-of the-art information Forecasts future materials, applications, and areas of R&D Contains simple language, explains technical terms, and minimizes technical lingo Includes over 200 tables, nearly 200 figures, and more than 1,700 references to technical publications, mostly very recent Handbook of Sustainable Polymers for Additive Manufacturing appeals to a diverse audience of students and academic, technical, and business professionals in the fields of materials science and mechanical, chemical, and manufacturing engineering.
This volume covers kinetics, bioengineering and industrial aspects and focusses on thermodynamic and mathematical considerations of PHA biosynthesis, bioengineering aspects regarding bioreactor design and downstream processing for PHA recovery from microbial biomass.