Download Free The Handbook Of Ionic Liquids Book in PDF and EPUB Free Download. You can read online The Handbook Of Ionic Liquids and write the review.

Ionic liquids (ILs) are a class of low melting point, ionic compounds which have a variety of properties allowing many of them to be sustainable green solvents. These non-molecular solvents possess high thermal stabilities and negligible vapour pressures making them attractive alternatives to environmentally unfriendly solvents that produce volatile organic compounds (VOCs). In this book, the authors present research on the properties, applications and hazards of ionic liquids. Some of the topics discussed include challenges and perspectives of ionic liquids vs. traditional solvents for cellulose processing; ionic liquids as sustainable extractants in petrochemical processing; bronsted acid-base ionic liquids and membranes as ion conducting materials; and, physical and chemical properties of ionic liquids.
Handbook of Ionic Liquids A one-stop reference for researchers interested in ionic liquids and their applications Handbook of Ionic Liquids: Fundamentals, Applications, and Sustainability, constitutes an overview of the latest advances in ionic liquid chemistry. It offers a comprehensive summary of the development history of ionic liquids, their design, and the diverse array of applications—including green and sustainable synthesis, catalysis, drug development and medicine, biotechnology, materials science, and electrochemistry. The authors explain a variety of processes used to develop novel materials with ionic liquids and describe likely future developments using practical examples taken from contemporary research and development in the field. The book includes discussions of biomass conversion, CO2 capture, and more. You’ll also discover: A thorough introduction to the theory of ionic liquids, as well as their different types and recycling methods Comprehensive explorations of the physico-chemical properties of ionic liquids Practical discussions of ionic liquid synthesis and analysis, including green synthesis and heterocyclic chemistry applications Summary of the use of ionic liquids in materials science, including polymers, energy conversion, and storage devices Perfect for organic, catalytic, physical, analytical, and environmental chemists, Handbook of Ionic Liquids: Fundamentals, Applications, and Sustainability will also benefit electrochemists, materials scientists, and biotechnologists with an interest in ionic liquids and their application.
Written by experts who have been part of this field since its beginnings in both research and academia, this textbook introduces readers to this evolving topic and the broad range of applications that are being explored. The book begins by examining what it is that defines ionic liquids and what sets them apart from other materials. Chapters describe the various types of ionic liquids and the different techniques used to synthesize them, as well as their properties and some of the methods used in their measurement. Further chapters delve into synthetic and electrochemical applications and their broad use as "Green" solvents. Final chapters examine important applications in a wide variety of contexts, including such devices as solar cells and batteries, electrochemistry, and biotechnology. The result is a must-have resource for any researcher beginning to work in this growing field, including senior undergraduates and postgraduates.
This comprehensive database on physical properties of pure ionic liquids (ILs) contains data collected from 269 peer-reviewed papers in the period from 1982 to June 2008. There are more than 9,400 data points on the 29 kinds of physicochemical properties for 1886 available ionic liquids, from which 807 kinds of cations and 185 kinds of anions were extracted. This book includes nearly all known pure ILs and their known physicochemical properties through June 2008. In addition, the authors incorporate the main applications of individual ILs and a large number of references. - Nearly 50 tables include typical data, experimental and modelling or simulation comparison, and model parameters, enhancing the application of ILs - 100 figures--from QSPR, EOS and gE models to quantum and molecular simulations--help readers understand ILs at molecular level - Applications illustrate the role of IL properties in industry, in particular the development of novel clean processes and products
This handbook is a valuable resource for scientists, engineers, graduate students, managers, decision makers, and those who are interested in ionic liquids. Many industrial applications rely on the use of Ionic Liquid Mixtures, as in solar energy storage, waste recycling or batteries.Physicochemical Properties of Ionic Liquid Mixtures is a useful handbook that contains the following features: - the physicochemical properties and property models of mixtures containing ionic liquids - supplemented by a comprehensive database of properties listing ionic liquid systems collected from more than 800 dependable literature sources - over 60,000 data entries on 39 types of physicochemical properties for 1388 mixtures, including binary, ternary, quaternary and other mixtures.
This book addresses the use of ionic liquids in biotransformation and organocatalysis. Its major parts include: an overview of the fundamentals of ionic liquids and their interactions with proteins and enzymes; the use of ILs in biotransformations; non-solvent applications such as additives, membranes, substrate anchoring, and the use of ILs in organocatalysis (from solvents to co-catalysts and new reactivities, as well as non-solvent applications such as anchoring and immobilization).
This book is intended to provide a deep understanding on the advanced treatments of thermal properties of materials through experimental, theoretical, and computational techniques. This area of interest is being taught in most universities and institutions at the graduate and postgraduate levels. Moreover, the increasing modern technical and social interest in energy has made the study of thermal properties more significant and exciting in the recent years. This book shares with the international community a sense of global motivation and collaboration on the subject of thermal conductivity and its wide spread applications in modern technologies. This book presents new results from leading laboratories and researchers on topics including materials, thermal insulation, modeling, steady and transient measurements, and thermal expansion. The materials of interest range from nanometers to meters, bringing together ideas and results from across the research field.
In the late 1990s, there was an explosion of research on ionic liquids and they are now a major topic of academic and industrial interest with numerous existing and potential applications. Since then, the number of scientific papers focusing on ionic liquids has risen exponentially, including a few edited multi-author books covering the latest advances in ionic liquids chemistry and several volumes of symposium proceedings. Much of the content in these books and volumes is written using technical jargon that only scientists at the cutting edge of ionic liquids research will understand and ionic liquids are hardly covered in most modern chemistry textbooks. This is the first single-author book on ionic liquids and the first introductory book on the topic. It is written in a clear, concise and consistent way. The book provides a useful introduction to ionic liquids for those readers who are not familiar with the topic. It is also wide ranging, embracing every aspect of the chemistry and applications of ionic liquids. The book draws extensively on the primary scientific literature to provide numerous examples of research on ionic liquids. These examples will enable the reader to become familiar with the key developments in ionic liquids chemistry over recent years. The book provides an introduction to: ionic liquids; their nomenclature; history; physical, chemical and biological properties; and their wide ranging uses and potential applications in catalysis, electrochemistry, inorganic chemistry, organic chemistry, analysis, biotechnology, green chemistry and clean technology. Notable and important chapters include "The Green Credentials of Ionic Liquids" and "Biotechnology." The chapter on "Applications" includes sections with brief descriptions of recent research on the development of ionic liquids: - for the construction of a liquid mirror for a moon telescope - for use as rocket propellants - for use as antimicrobial agents that combat MRSA - as active pharmaceutical ingredients and antiviral drugs - for embalming and tissue preservation Science students, researchers, teachers in academic institutions and chemists and other scientists in industry and government laboratories will find the book an invaluable introduction to one of the most rapidly advancing and exciting fields of science and technology today.
Edited and written by renowned experts in the field, this is the first book to reflect the state of the art of nanocatalysis in ionic liquids. Divided into two core areas, the first part of the book describes the different classes of metal nanoparticles as well as their synthesis in ionic liquids, while the second focuses on such emerging issues as the application of such systems to energy and biomass conversion.
Reflecting the dramatic rise in interest shown in this field over the last few years, this book collates the widespread knowledge into one handy volume. It covers in depth all classes of ionic liquids thus far in existence, with the individual chapters written by internationally recognized experts. The text is written to suit several levels of difficulty, containing information on basic physical chemistry in ionic liquids, a theory on the conductivity as well as plating protocols suited to undergraduate courses. The whole is rounded off with an appendix providing experimental procedures to enable readers to experiment with ionic liquids for themselves.