Download Free The H Infinity Control Problem Book in PDF and EPUB Free Download. You can read online The H Infinity Control Problem and write the review.

The present book deals with canonical factorization of matrix and operator functions that appear in state space form or that can be transformed into such a form. A unified geometric approach is used. The main results are all expressed explicitly in terms of matrices or operators, which are parameters of the state space representation. The applications concern different classes of convolution equations. A large part the book deals with rational matrix functions only.
H-infinity control theory deals with the minimization of the H-norm of the transfer matrix from an exogenous disturbance to a pertinent controlled output of a given plant. This comprehensive book examines both the theoretical and practical aspects of H-infinity control from the angle of the structural properties of linear systems.
This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. The book can be used for a second or third year graduate level course in the subject, and researchers working in the area will find the book useful as a standard reference. Based mostly on recent work of the authors, the book is written on a good mathematical level. Many results in it are original, interesting, and inspirational. The topic is central to modern control and hence this definitive book is highly recommended to anyone who wishes to catch up with important theoretical developments in applied mathematics and control.
This versatile book teaches control system design using H-Infinity techniques that are simple and compatible with classical control, yet powerful enough to quickly allow the solution of physically meaningful problems. The authors begin by teaching how to formulate control system design problems as mathematical optimization problems and then discuss the theory and numerics for these optimization problems. Their approach is simple and direct, and since the book is modular, the parts on theory can be read independently of the design parts and vice versa, allowing readers to enjoy the book on many levels. Until now, there has not been a publication suitable for teaching the topic at the undergraduate level. This book fills that gap by teaching control system design using H^\infty techniques at a level within reach of the typical engineering and mathematics student. It also contains a readable account of recent developments and mathematical connections.
This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H∞ approach in the nonsmooth setting. Similar to the standard nonlinear H∞ approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements. Advanced H∞ Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is extended to infinite-dimensional setting, involving time-delay and distributed parameter systems. To help illustrate this synthesis, the book focuses on electromechanical applications with nonsmooth phenomena caused by dry friction, backlash, and sampled-data measurements. Special attention is devoted to implementation issues. Requiring familiarity with nonlinear systems theory, this book will be accessible to graduate students interested in systems analysis and design, and is a welcome addition to the literature for researchers and practitioners in these areas.
The authors present a study of the H-infinity control problem and related topics for descriptor systems, described by a set of nonlinear differential-algebraic equations. They derive necessary and sufficient conditions for the existence of a controller solving the standard nonlinear H-infinity control problem considering both state and output feedback. One such condition for the output feedback control problem to be solvable is obtained in terms of Hamilton–Jacobi inequalities and a weak coupling condition; a parameterization of output feedback controllers solving the problem is also provided. All of these results are then specialized to the linear case. The derivation of state-space formulae for all controllers solving the standard H-infinity control problem for descriptor systems is proposed. Among other important topics covered are balanced realization, reduced-order controller design and mixed H2/H-infinity control. "H-infinity Control for Nonlinear Descriptor Systems" provides a comprehensive introduction and easy access to advanced topics.
This book provides a unified collection of important, recent results for the design of robust controllers for uncertain systems. Most of the results presented are based on H? control theory, or its stochastic counterpart, risk sensitive control theory.Central to the philosophy of the book is the notion of an uncertain system. Uncertain systems are considered using several different uncertainty modeling schemes. These include norm bounded uncertainty, integral quadratic constraint (IQC) uncertainty and a number of stochastic uncertainty descriptions. In particular, the authors examine stochastic uncertain systems in which the uncertainty is outlined by a stochastic version of the IQC uncertainty description.For each class of uncertain systems covered in the book, corresponding robust control problems are defined and solutions discussed.
Through its rapid progress in the last decade, HOOcontrol became an established control technology to achieve desirable performances of con trol systems. Several highly developed software packages are now avail able to easily compute an HOOcontroller for anybody who wishes to use HOOcontrol. It is questionable, however, that theoretical implications of HOOcontrol are well understood by the majority of its users. It is true that HOOcontrol theory is harder to learn due to its intrinsic mathemat ical nature, and it may not be necessary for those who simply want to apply it to understand the whole body of the theory. In general, how ever, the more we understand the theory, the better we can use it. It is at least helpful for selecting the design options in reasonable ways to know the theoretical core of HOOcontrol. The question arises: What is the theoretical core of HOO control? I wonder whether the majority of control theorists can answer this ques tion with confidence. Some theorists may say that the interpolation theory is the true essence of HOOcontrol, whereas others may assert that unitary dilation is the fundamental underlying idea of HOOcontrol. The J spectral factorization is also well known as a framework of HOOcontrol. A substantial number of researchers may take differential game as the most salient feature of HOOcontrol, and others may assert that the Bounded Real Lemma is the most fundamental building block.
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.