Download Free The H Function Book in PDF and EPUB Free Download. You can read online The H Function and write the review.

TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
It is with great pleasure that I introduce the first edition of the book titled “Applications of Special Functions and Fractional Calculus in Statistics and Other Fields” to our esteemed readers. In today’s world of science and technology, mathematics plays a vital role in opening new horizons of intellectual exploration. This comprehensive book is divided into three chapters, providing readers with a deep understanding of the power and versatility of special functions. The concepts are presented in a clear and accessible manner, accompanied by practical examples that demonstrate their application. Whether you are a student, researcher, or practitioner in the fields of mathematics or engineering physics, this book serves as an indispensable resource for comprehending and utilizing special functions to address various problems. It equips readers with the essential tools to navigate the complexities of these functions and apply them effectively in their respective disciplines. With its rich content and practical approach, “Applications of Special Functions and Fractional Calculus in Statistics and Other Fields” promises to be an invaluable companion for those seeking a comprehensive understanding of special functions and their real-world implications.
The subject of this book is the higher transcendental function known as the confluent hypergeometric function. In the last two decades this function has taken on an ever increasing significance because of its use in the application of mathematics to physical and technical problems. There is no doubt that this trend will continue until the general theory of confluent hypergeometric functions becomes familiar to the majority of physicists in much the same way as the cylinder functions, which were previously less well known, are now used in many engineering and physical problems. This book is intended to further this development. The important practical significance of the functions which are treated hardly demands an involved discussion since they include, as special cases, a number of simpler special functions which have long been the everyday tool of the physicist. It is sufficient to mention that these include, among others, the logarithmic integral, the integral sine and cosine, the error integral, the Fresnel integral, the cylinder functions and the cylinder function in parabolic cylindrical coordinates. For anyone who puts forth the effort to study the confluent hypergeometric function in more detail there is the inestimable advantage of being able to understand the properties of other functions derivable from it. This gen eral point of view is particularly useful in connection with series ex pansions valid for values of the argument near zero or infinity and in connection with the various integral representations.
This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.
Nonlinearity and Chaos in Molecular Vibrations deals systematically with a Lie algebraic approach to the study of nonlinear properties of molecular highly excited vibrations. The fundamental concepts of nonlinear dynamics such as chaos, fractals, quasiperiodicity, resonance, and the Lyapunov exponent, and their roles in the study of molecular vibrations are presented.The 20 chapters cover the basic ideas, the concept of dynamical groups, the integrable two-mode SU(2) system, the unintegrable three-mode SU(3) system, the noncompact su(1,1) algebraic application, su(3) symmetry breaking and its application and the quantal effect of asymmetric molecular rotation. Emphasis is given to: resonance and chaos, the fractal structure of eigencoefficients, the C-H bend motion of acetylene, regular and chaotic motion of DCN, the existence of approximately conserved quantum numbers, one-electronic motion in multi-sites, the Lyapunov exponent, actions of periodic trajectories and quantization, the H function and its application in vibrational relaxation as well as the Dixon dip and its destruction and chaos in the transitional states. This approach bridges the gap between molecular vibrational spectroscopy and nonlinear dynamics.The book presents a framework of information that readers can use to build their knowledge, and is therefore highly recommended for all those working in or studying molecular physics, molecular spectroscopy, chemical physics and theoretical physics.* Discusses nonlinearity and chaotic phenomena in molecular vibrations* Approaches the complicated highly excited molecular vibration* Provides clear information for students and researchers looking to expand knowledge in this field
This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This stand-alone special topics volume reports recent advances in electron-transfer research with significant, up-to-date chapters by internationally recognized researchers.
Around 1970, an abrupt change occurred in the study of holomorphic functions of several complex variables. Sheaves vanished into the back ground, and attention was focused on integral formulas and on the "hard analysis" problems that could be attacked with them: boundary behavior, complex-tangential phenomena, solutions of the J-problem with control over growth and smoothness, quantitative theorems about zero-varieties, and so on. The present book describes some of these developments in the simple setting of the unit ball of en. There are several reasons for choosing the ball for our principal stage. The ball is the prototype of two important classes of regions that have been studied in depth, namely the strictly pseudoconvex domains and the bounded symmetric ones. The presence of the second structure (i.e., the existence of a transitive group of automorphisms) makes it possible to develop the basic machinery with a minimum of fuss and bother. The principal ideas can be presented quite concretely and explicitly in the ball, and one can quickly arrive at specific theorems of obvious interest. Once one has seen these in this simple context, it should be much easier to learn the more complicated machinery (developed largely by Henkin and his co-workers) that extends them to arbitrary strictly pseudoconvex domains. In some parts of the book (for instance, in Chapters 14-16) it would, however, have been unnatural to confine our attention exclusively to the ball, and no significant simplifications would have resulted from such a restriction.