Download Free The Gravitational Constant Book in PDF and EPUB Free Download. You can read online The Gravitational Constant and write the review.

The Newtonian constant of gravitation, G (often referred to as "big G"), is one of the most important of the universal fundamental physical constants. However, its value is the least well-determined of all such constants. This is because G is very difficult to measure reliably. Even though the gravitational force is responsible for star and galaxy formation on the massive scale of the universe, the force itself is minuscule on the tiny scale of the laboratory masses which must be used in the measurement. Consequently, its experimental value is prone to a high degree of inaccuracy. Moreover, it is the viewpoint of most physicists that G is not related to the other fundamental physical constants by any theory or understanding that is currently available. Therefore, it is thought that the value of G can only be obtained by measurement, and not from evaluating it in terms of other fundamental constants whose values are known with much greater precision and accuracy. The work presented in the book is an attempt to break through this mental barrier by demonstrating through numerical analysis that G is definitely related to the other fundamental constants. Consequently, it is possible to propose an exact value for G (to nine significant figures) that is obtainable from evaluation instead of from measurement.
APlusPhysics: Your Guide to Regents Physics Essentials is a clear and concise roadmap to the entire New York State Regents Physics curriculum, preparing students for success in their high school physics class as well as review for high marks on the Regents Physics Exam. Topics covered include pre-requisite math and trigonometry; kinematics; forces; Newton's Laws of Motion, circular motion and gravity; impulse and momentum; work, energy, and power; electrostatics; electric circuits; magnetism; waves; optics; and modern physics. Featuring more than five hundred questions from past Regents exams with worked out solutions and detailed illustrations, this book is integrated with the APlusPhysics.com website, which includes online question and answer forums, videos, animations, and supplemental problems to help you master Regents Physics essentials. "The best physics books are the ones kids will actually read." Advance Praise for APlusPhysics Regents Physics Essentials: "Very well written... simple, clear engaging and accessible. You hit a grand slam with this review book." -- Anthony, NY Regents Physics Teacher. "Does a great job giving students what they need to know. The value provided is amazing." -- Tom, NY Regents Physics Teacher. "This was tremendous preparation for my physics test. I love the detailed problem solutions." -- Jenny, NY Regents Physics Student. "Regents Physics Essentials has all the information you could ever need and is much easier to understand than many other textbooks... it is an excellent review tool and is truly written for students." -- Cat, NY Regents Physics Student
An up-to-date description of progress and current problems with the gravitational constant, both in terms of generalized gravitational theories and experiments either in the laboratory, using Casimir force measurements, or in space at solar system distances and in cosmological observations. Contributions cover different aspects of the state and prediction of unified theories of the physical interactions including gravitation as a cardinal link, the role of experimental gravitation and observational cosmology in discriminating between them, the problem of the precise measurement and stability of fundamental physical constants in space and time, and the gravitational constant in particular. Recent advances discussed include unified and scalar-tensor theories, theories in diverse dimensions and their observational windows, gravitational experiments in space, rotational and torsional effects in gravity, basic problems in cosmology, early universe as an arena for testing unified models, and big bang nucleosynthesis.
Spacetime physics -- Physics in flat spacetime -- The mathematics of curved spacetime -- Einstein's geometric theory of gravity -- Relativistic stars -- The universe -- Gravitational collapse and black holes -- Gravitational waves -- Experimental tests of general relativity -- Frontiers
"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.
This book reveals the multi-generational process involved in humanity's first major scientific achievement, namely the discovery of modern physics, and examines the personal lives of six of the intellectual giants involved. It explores the profound revolution in the way of thinking, and in particular the successful refutation of the school of thought inherited from the Greeks, which focused on the perfection and immutability of the celestial world. In addition, the emergence of the scientific method and the adoption of mathematics as the central tool in scientific endeavors are discussed. The book then explores the delicate thread between pure philosophy, grand unifying theories, and verifiable real-life scientific facts. Lastly, it turns to Kepler’s crucial 3rd law and shows how it was derived from a mere six data points, corresponding to the six planets known at the time. Written in a straightforward and accessible style, the book will inform and fascinate all aficionados of science, history, philosophy, and, in particular, astronomy.
The Feynman Lectures on Gravitation are based on notes prepared during a course on gravitational physics that Richard Feynman taught at Caltech during the 1962-63 academic year. For several years prior to these lectures, Feynman thought long and hard about the fundamental problems in gravitational physics, yet he published very little. These lectures represent a useful record of his viewpoints and some of his insights into gravity and its application to cosmology, superstars, wormholes, and gravitational waves at that particular time. The lectures also contain a number of fascinating digressions and asides on the foundations of physics and other issues.Characteristically, Feynman took an untraditional non-geometric approach to gravitation and general relativity based on the underlying quantum aspects of gravity. Hence, these lectures contain a unique pedagogical account of the development of Einstein's general theory of relativity as the inevitable result of the demand for a self-consistent theory of a massless spin-2 field (the graviton) coupled to the energy-momentum tensor of matter. This approach also demonstrates the intimate and fundamental connection between gauge invariance and the principle of equivalence.
Reality as we know it is bound by a set of constants—numbers and values that dictate the strengths of forces like gravity, the speed of light, and the masses of elementary particles. In The Constants of Nature, Cambridge Professor and bestselling author John D.Barrow takes us on an exploration of these governing principles. Drawing on physicists such as Einstein and Planck, Barrow illustrates with stunning clarity our dependence on the steadfastness of these principles. But he also suggests that the basic forces may have been radically different during the universe’s infancy, and suggests that they may continue a deeply hidden evolution. Perhaps most tantalizingly, Barrow theorizes about the realities that might one day be found in a universe with different parameters than our own.
The bestselling author of Dogs That Know When Their Owners Are Coming Home offers an intriguing new assessment of modern day science that will radically change the way we view what is possible. In Science Set Free (originally published to acclaim in the UK as The Science Delusion), Dr. Rupert Sheldrake, one of the world's most innovative scientists, shows the ways in which science is being constricted by assumptions that have, over the years, hardened into dogmas. Such dogmas are not only limiting, but dangerous for the future of humanity. According to these principles, all of reality is material or physical; the world is a machine, made up of inanimate matter; nature is purposeless; consciousness is nothing but the physical activity of the brain; free will is an illusion; God exists only as an idea in human minds, imprisoned within our skulls. But should science be a belief-system, or a method of enquiry? Sheldrake shows that the materialist ideology is moribund; under its sway, increasingly expensive research is reaping diminishing returns while societies around the world are paying the price. In the skeptical spirit of true science, Sheldrake turns the ten fundamental dogmas of materialism into exciting questions, and shows how all of them open up startling new possibilities for discovery. Science Set Free will radically change your view of what is real and what is possible.
The concept of gravity provides a natural phenomenon that is simultaneously obvious and obscure; we all know what it is, but rarely question why it is. The simple observation that 'what goes up must come down' contrasts starkly with our current scientific explanation of gravity, which involves challenging and sometimes counterintuitive concepts. With such extremes between the plain and the perplexing, gravity forces a sharp focus on scientific method. Following the history of gravity from Aristotle to Einstein, this clear account highlights the logic of scientific method for non-specialists. Successive theories of gravity and the evidence for each are presented clearly and rationally, focusing on the fundamental ideas behind them. Using only high-school level algebra and geometry, the author emphasizes what the equations mean rather than how they are derived, making this accessible for all those curious about gravity and how science really works.