Download Free The Gohberg Anniversary Collection Book in PDF and EPUB Free Download. You can read online The Gohberg Anniversary Collection and write the review.

In this article we shall use two special classes of reproducing kernel Hilbert spaces (which originate in the work of de Branges [dB) and de Branges-Rovnyak [dBRl), respectively) to solve matrix versions of a number of classical interpolation problems. Enroute we shall reinterpret de Branges' characterization of the first of these spaces, when it is finite dimensional, in terms of matrix equations of the Liapunov and Stein type and shall subsequently draw some general conclusions on rational m x m matrix valued functions which are "J unitary" a.e. on either the circle or the line. We shall also make some connections with the notation of displacement rank which has been introduced and extensively studied by Kailath and a number of his colleagues as well as the one used by Heinig and Rost [HR). The first of the two classes of spaces alluded to above is distinguished by a reproducing kernel of the special form K (>.) = J - U(>')JU(w)* (Ll) w Pw(>') , in which J is a constant m x m signature matrix and U is an m x m J inner matrix valued function over ~+, where ~+ is equal to either the open unit disc ID or the open upper half plane (1)+ and Pw(>') is defined in the table below.
R. S. PHILLIPS I am very gratified to have been asked to give this introductory talk for our honoured guest, Israel Gohberg. I should like to begin by spending a few minutes talking shop. One of the great tragedies of being a mathematician is that your papers are read so seldom. On the average ten people will read the introduction to a paper and perhaps two of these will actually study the paper. It's difficult to know how to deal with this problem. One strategy which will at least get you one more reader, is to collaborate with someone. I think Israel early on caught on to this, and I imagine that by this time most of the analysts in the world have collaborated with him. He continues relentlessly in this pursuit; he visits his neighbour Harry Dym at the Weizmann Institute regularly, he spends several months a year in Amsterdam working with Rien Kaashoek, several weeks in Maryland with Seymour Goldberg, a couple of weeks here in Calgary with Peter Lancaster, and on the rare occasions when he is in Tel Aviv, he takes care of his many students.
This volume presents a set of papers based on the proceedings of the NATO Advanced Research Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France, in June 1989. The workshop focused on the fusion or integration of sensor information to achieve the optimum interpretation of a scene. The papers cover a broad range of topics, including principles and issues in multisensor fusion, information fusion for navigation, multisensor fusion for object recognition, network approaches to multisensor fusion, computer architectures for multisensor fusion, and applications of multisensor fusion. The authors have documented their own research and, in so doing,have presented the state of the art in the field. Each author is a recognized leader in his or her area in the academic, governmental, or industrial research community. Several contributors present novel points of view on the integration of information. The book gives a representative picture of current progress in multisensor fusion for computer vision among the leading research groups in Europe and North America.
This is the first volume of a collection of original and review articles on recent advances and new directions in a multifaceted and interconnected area of mathematics and its applications. It encompasses many topics in theoretical developments in operator theory and its diverse applications in applied mathematics, physics, engineering, and other disciplines. The purpose is to bring in one volume many important original results of cutting edge research as well as authoritative review of recent achievements, challenges, and future directions in the area of operator theory and its applications.
This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.
This book provides a descriptive account of Mischa Cotlar's work along with a complete bibliography of his mathematical books and papers. It examines the harmonic analysis and operator theory in relation with the theory of partial differential equations.
In two volumes, this comprehensive treatment covers all that is needed to understand and appreciate this beautiful branch of mathematics.
This treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practitioners and scholars. It is the first book in which nonsymmetric algebraic Riccati equations are treated in a clear and systematic way. Some proofs of theoretical results have been simplified and a unified notation has been adopted. Readers will find a unified discussion of doubling algorithms, which are effective in solving algebraic Riccati equations as well as a detailed description of all classical and advanced algorithms for solving algebraic Riccati equations and their MATLAB codes. This will help the reader gain an understanding of the computational issues and provide ready-to-use implementation of the different solution techniques.
This account of totally positive matrices treats their central properties with full proofs and a complete bibliography.
This book is the second of a two volume series. Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book features fully-refereed, high-quality papers exploring new results and trends in weighted norm inequalities, Schur-Agler class functions, complex analysis, dynamical systems, and dyadic harmonic analysis. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. A survey of the two weight problem for the Hilbert transform and an expository article on the Clark model to the case of non-singular measures and applications to the study of rank-one perturbations are included. The material for this volume is based on the 13th New Mexico Analysis Seminar held at the University of New Mexico, April 3-4, 2014 and on several special sections of the Western Spring Sectional Meeting at the University of New Mexico, April 4-6,2014. During the event, participants honored the memory of Cora Sadosky—a great mathematician who recently passed away and who made significant contributions to the field of harmonic analysis. Cora was an exceptional scientist and human being. She was a world expert in harmonic analysis and operator theory, publishing over fifty-five research papers and authoring a major textbook in the field. Participants of the conference include new and senior researchers, recent doctorates as well as leading experts in the area.