Download Free The Geometry Of The Complex Domain Book in PDF and EPUB Free Download. You can read online The Geometry Of The Complex Domain and write the review.

This work examines a rich tapestry of themes and concepts and provides a comprehensive treatment of an important area of mathematics, while simultaneously covering a broader area of the geometry of domains in complex space. At once authoritative and accessible, this text touches upon many important parts of modern mathematics: complex geometry, equivalent embeddings, Bergman and Kahler geometry, curvatures, differential invariants, boundary asymptotics of geometries, group actions, and moduli spaces. The Geometry of Complex Domains can serve as a “coming of age” book for a graduate student who has completed at least one semester or more of complex analysis, and will be most welcomed by analysts and geometers engaged in current research.
The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach", and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry.
Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.
The words "microdifferential systems in the complex domain" refer to seve ral branches of mathematics: micro local analysis, linear partial differential equations, algebra, and complex analysis. The microlocal point of view first appeared in the study of propagation of singularities of differential equations, and is spreading now to other fields of mathematics such as algebraic geometry or algebraic topology. How ever it seems that many analysts neglect very elementary tools of algebra, which forces them to confine themselves to the study of a single equation or particular square matrices, or to carryon heavy and non-intrinsic formula tions when studying more general systems. On the other hand, many alge braists ignore everything about partial differential equations, such as for example the "Cauchy problem", although it is a very natural and geometri cal setting of "inverse image". Our aim will be to present to the analyst the algebraic methods which naturally appear in such problems, and to make available to the algebraist some topics from the theory of partial differential equations stressing its geometrical aspects. Keeping this goal in mind, one can only remain at an elementary level.
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
An introduction to Griffiths' theory of period maps and domains, focused on algebraic, group-theoretic and differential geometric aspects.
The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.
In the last twenty years, the theory of holomorphic dynamical systems has had a resurgence of activity, particularly concerning the fine analysis of Julia sets associated with polynomials and rational maps in one complex variable. At the same time, closely related theories have had a similar rapid development, for example the qualitative theory of differential equations in the complex domain. The meeting, ``Etat de la recherche'', held at Ecole Normale Superieure de Lyon, presented the current state of the art in this area, emphasizing the unity linking the various sub-domains. This volume contains four survey articles corresponding to the talks presented at this meeting. D. Cerveau describes the structure of polynomial differential equations in the complex plane, focusing on the local analysis in neighborhoods of singular points. E. Ghys surveys the theory of laminations by Riemann surfaces which occur in many dynamical or geometrical situations. N. Sibony describes the present state of the generalization of the Fatou-Julia theory for polynomial or rational maps in two or more complex dimensions. Lastly, the talk by J.-C. Yoccoz, written by M. Flexor, considers polynomials of degree $2$ in one complex variable, and in particular, with the hyperbolic properties of these polynomials centered around the Jakobson theorem. This is a general introduction that gives a basic history of holomorphic dynamical systems, demonstrating the numerous and fruitful interactions among the topics. In the spirit of the ``Etat de la recherche de la SMF'' meetings, the articles are written for a broad mathematical audience, especially students or mathematicians working in different fields. This book is translated from the French edition by Leslie Kay.