Download Free The Geometric Collection Presents Book in PDF and EPUB Free Download. You can read online The Geometric Collection Presents and write the review.

This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Looking for something different than the rest? The Geometric Collection is proud to present the second volume in our coloring book calendar series! Stay organized in style. Holidays are included so you'll never forget a date again.
Geometric Collection is proud to present the fourth volume in our coloring book series! Have fun and get creative! There's no wrong way to color these incredible, gem-like birds. This book includes over 20 species; printed single sided if you want to use markers or frame them. Visit our site for sample pages and upcoming releases. (www.GeometricCollection.com) The Geometric Collection, we make coloring books and stuff.
The second half of the 20th century and its conclusion : crisis in the physics and mathematics community in Russia and in the West -- Interview with Sergey P. Novikov -- The w-function of the KdV hierarchy -- On the zeta functions of a meromorphic germ in two variables -- On almost duality for Frobenius manifolds -- Finitely presented semigroups in knot theory. Oriented case -- Topological robotics : subspace arrangements and collision free motion planning -- The initial-boundary value problem on the interval for the nonlinear Schrödinger equation. The algebro-geometric approach. I -- On odd Laplace operators. II -- From 2D Toda hierarchy to conformal maps for domains of the Riemann sphere --Integrable chains on algebraic curves -- Fifteen years of KAM for PDE -- Graded filiform Lie algebras and symplectic nilmanifolds --Adiabatic limit in the Seiberg-Witten equations -- Affine Krichever-Novikov algebras, their representations and applications -- Tame integrals of motion and o-minimal structures.
The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.