Download Free The Geology Of Cedar Valley Utah County Utah And Its Relation To Ground Water Conditions Book in PDF and EPUB Free Download. You can read online The Geology Of Cedar Valley Utah County Utah And Its Relation To Ground Water Conditions and write the review.

This CD contains a 125-page comprehensive study of the hydrogeology of Cedar Valley, Utah County, located in north-central Utah. The report includes 72 figures; two plates, one of which is a potentiometric map of the basin-fill, bedrock, and several perched aquifers; and seven appendices of data. Field investigations included groundwater chemistry sampling, regular water-level monitoring, and multiple-well aquifer testing. The field data were incorporated into a 3D digital groundwater flow model using MODFLOW2000. Seventy percent of the recharge to the Cedar Valley aquifer system is from precipitation in the Oquirrh Mountains. Groundwater generally flows from west to east and exits the aquifer system mostly as interbasin flow through bedrock to the northeast and southeast. The groundwater model showed a 39-year (1969-2007) average recharge to the Cedar Valley groundwater system of 25,600 acre-feet per year and discharge of 25,200 acre-feet per year. A significant volume of precipitation recharge (perhaps 4300 acre-feet per year) does not interact with the basin-fill aquifer but travels within bedrock to discharge to adjacent valleys or as bedrock well discharge. 125 pages + 2 plates
This CD-ROM contains a report (33 pages + 92 page appendices) and 6 plates at 1:100,000 scale that addresses ground-water conditions in Cedar Valley's basin-fill aquifer and provide recommendations for land-use planning.
This 116-page report presents the results of an investigation by the Utah Geological Survey of land subsidence and earth fissures in Cedar Valley, Iron County, Utah. Basin-fill sediments of the Cedar Valley Aquifer contain a high percentage of fine-grained material susceptible to compaction upon dewatering. Groundwater discharge in excess of recharge (groundwater mining) has lowered the potentiometric surface in Cedar Valley as much as 114 feet since 1939. Groundwater mining has caused permanent compaction of fine-grained sediments of the Cedar Valley aquifer, which has caused the land surface to subside, and a minimum of 8.3 miles of earth fissures to form. Recently acquired interferometric synthetic aperture radar imagery shows that land subsidence has affected approximately 100 mi² in Cedar Valley, but a lack of accurate historical benchmark elevation data over much of the valley prevents its detailed quantification. Continued groundwater mining and resultant subsidence will likely cause existing fissures to lengthen and new fissures to form which may eventually impact developed areas in Cedar Valley. This report also includes possible aquifer management options to help mitigate subsidence and fissure formation, and recommended guidelines for conducting subsidence-related hazard investigations prior to development.
The purpose of this study is to provide geologic information important in assessing ground-water resources and siting water wells in the Snyderville basin. This geologic study was one phase of a cooperative and more comprehensive water-resource investigation. Subsequent phases conducted by the U.S. Geological Survey Water Resources Division (USGS WRD), focused on the hydrology of the Snyderville basin. The information presented in this report is generalized and is not intended to substitute for site-specific investigations. Future detailed studies will add to the understanding of the geology and ground-water resources of the study area and supplement the information presented herein. 59 pages + 15 plates
This report describes the geology of the central Virgin River basin in southwestern Utah, and characterizes the structure and lithology of the Jurassic Navajo Sandstone and the thickness and stratigraphy of Quaternary-late Tertiary unconsolidated deposits, the two main aquifers in the region. Southwestern Utah has experienced rapid population growth and increased demand on water supplies during the past 15 years, and the purpose of this report is to better define the ground-water resources of the area. Ground water provides approximately half of the public water supply in southwestern Utah, so future decisions regarding water use must be based on careful geologic characterization of the aquifers and their relation to the regional hydrologic system. The results of this study will be applied to ground-water modeling, evaluating regional and local hydrogeologic conditions, and assessing sites for development of ground water. 53 pages + 7 plates
This 43-page report presents new Interferometric Synthetic Aperture Radar (InSAR) analysis of ground water subsidence in Cedar Valley in Iron County, Utah. This analysis is based on InSAR data from the ERS-1/2 satellites from 1992 to 2000, and the Envisat satellite from 2004 to 2010. A stack of five consecutive interferograms from the 1992-2000 time period and a stack of four consecutive interferograms from the 2004-2010 time period are included in this report; however, decorrelation in the vicinity of the Enoch graben makes an estimate of total deformation impossible using the stacks. In total, surface deformation has impacted approximately 256 km² (100 mi²) in Cedar Valley. Subsidence rates in the vicinity of the Enoch graben increased from approximately 0.5-1.0 cm/yr to roughly 1-2 cm/yr after 1999. Similarly, rates in central Cedar Valley show a general increasing trend after 1999, but rates appear to be more erratic than the other two sites. The spatial distribution of deformation in Cedar Valley correlates well with both the location of observed fissuring as well as the location of both municipal and private groundwater production wells. The fissuring observed near Quichapa Lake, as well as within the Enoch graben, is likely a direct result of groundwater pumping in these areas.