Download Free The Genetics And Epigenetics Of Induced Pluripotent Stem Cells Book in PDF and EPUB Free Download. You can read online The Genetics And Epigenetics Of Induced Pluripotent Stem Cells and write the review.

Growing evidence suggests that epigenetic mechanisms play a central role in stem cell biology and are vital for determining gene expression during cellular differentiation and governing mammalian development. In Stem Cell Epigenetics, leading international researchers examine how chromatin regulation and bona fide epigenetic mechanisms underlie stem cell renewal and differentiation. Authors also explore how the diversity of cell types, including the extent revealed by single cell omic approaches, is achieved, and how such processes may be reversed or managed via epigenetic reprogramming.Topics discussed include chromatin in pluripotency, stem cells and DNA methylation, histone modifications in stem cells and differentiation, higher-order chromatin conformation in pluripotent cells, stem cells and cancer, epigenetics and disease modeling, brain organoids from pluripotent cells, transcriptional regulation in stem cells and differentiation, non-coding RNAs in pluripotency and early differentiation, and diseases caused by epigenetic alterations in stem cells. Additionally, the book discusses the potential implementation of stem cell epigenetics in drug discovery, regenerative medicine, and disease treatment. Stem Cell Epigenetics will provide researchers and physicians with a state-of-the-art map to orient across the frontiers of this fast-evolving field. - Analyzes the role of epigenetics in embryonic stem cell regulation - Indicates the epigenetic mechanisms involved in stem cell differentiation and highlights modifications and misregulations that may result in disease pathogenesis - Examines the potential applications of stem cell epigenetics in therapeutic disease interventions and regenerative medicine, providing a foundation for researchers and physicians to bring this exciting and fast-evolving field into a clinical setting - Features chapter contributions by leading international experts
Stem cells have generated a lot of excitement among the researchers, clinicians and the public alike. Various types of stem cells are being evaluated for their regenerative potential. Marginal benefit resulting by transplanting autologus stem cells (deemed to be absolutely safe) in various clinical conditions has been proposed to be a growth factor effect rather than true regeneration. In contrast, various pre-clinical studies have been undertaken, using differentiated cells from embryonic stem cells or induced pluripotent stem cells have shown promise, functional improvement and no signs of teratoma formation. The scientists are not in a rush to reach the clinic but a handful of clinical studies have shown promise. This book is a collection of studies/reviews, beginning with an introduction to the pluripotent stem cells and covering various aspects like derivation, differentiation, ethics, etc., and hence would provide insight into the recent standing on the pluripotent stem cells biology. The chapters have been categorized into three sections, covering subjects ranging from the generation of pluripotent stem cells and various means of their derivation from embryonic as well as adult tissues, the mechanistic understanding of pluripotency and narrating the potential therapeutic implications of these in vitro generated cells in various diseases, in addition to the associated pros and cons in the same.
Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.
Epigenetics in Cardiovascular Disease, a new volume in the Translational Epigenetics series, offers a comprehensive overview of the epigenetics mechanisms governing cardiovascular disease development, as well as instructions in research methods and guidance in pursing new studies. More than thirty international experts provide an (i) overview of the epigenetics mechanisms and their contribution to cardiovascular disease development, (i) high-throughput methods for RNA profiling including single-cell RNA-seq, (iii) the role of nucleic acid methylation in cardiovascular disease development, (iv) epigenetic actors as biomarkers and drug targets, (v) and the potential of epigenetics to advance personalized medicine. Here, readers will discover strategies to combat research challenges, improve quality of their epigenetic research and reproducibility of their findings. Additionally, discussion of assay and drug development for personalized healthcare pave the way for a new era of understanding in cardiovascular disease. - Offers a thorough overview of role of epigenetics mechanisms in cardiovascular disease - Includes guidance to improve research plans, experimental protocols design, quality and reproducibility of results in new epigenetics research - Explores biomarkers and drug targets of therapeutic potential to advance personalized healthcare - Features chapter contributions from a wide range of international researchers in the field
Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.
Brain diseases can have a large impact on patients and society, and treatment is often not available. A new approach in which somatic cells are reprogrammed into induced pluripotent cells (iPS cells) is a significant breakthrough for regenerative medicine. This promises patient-specific tissue for replacement therapies, as well as disease-specific cells for developmental modeling and drug treatment screening. However, this method faces issues of low reprogramming efficiency, and poorly defined criteria for determining the conversion of one cell type to another. Cells contain epigenetic “memories” of what they were that can affect reprogramming. This book discusses the various methods to reprogram cells, the control and determination of cell identity, the epigenetic models that have emerged and the application of iPS cell therapy for brain diseases, in particular Parkinson’s disease and Vanishing White Matter (VWM).​
This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease
Understanding mechanisms of gene regulation that are independent of the DNA sequence itself - epigenetics - has the potential to overthrow long-held views on central topics in biology, such as the biology of disease or the evolution of species. High throughput technologies reveal epigenetic mechanisms at a genome-wide level, giving rise to epigenomics as a new discipline with a distinct set of research questions and methods. Leading experts from academia, the biotechnology and pharmaceutical industries explain the role of epigenomics in a wide range of contexts, covering basic chromatin biology, imprinting at a genome-wide level, and epigenomics in disease biology and epidemiology. Details on assays and sequencing technology serve as an up-to-date overview of the available technological tool kit. A reliable guide for newcomers to the field as well as experienced scientists, this is a unique resource for anyone interested in applying the power of twenty-first-century genomics to epigenetic studies.
An early view of eukaryotic chromosomes was that of static structures, which stored DNA not in use within a given cell type. It was thought that packaging of DNA into higher levels of chromatin structure would suffice to repress gene expression and that the challenge to the cell would be to rescue specific sequences from these structures. The exten sive packaging of inactive DNA was considered the primary difference between eukaryotic and prokaryotic genomes and except for that point both would be similarly regulated by cis-acting sequences and trans acting factors. Our view of eukaryotic chromosomes has evolved dra matically over the last decade. The picture of chromosomes that is emerging is that of dynamic breathing organelles actively regulating the flow of genetic information from the genome. Indeed chromatin is so fluid that even maintaining gene quiescence is an active process and is tightly regulated. Chromatin dynamics is a consequence of protein complexes that modify histones, remove histone modifications, mobi lize nucleosomes or stabilize nucleosomes. Awide variety of such com plexes have now been described. Some are abundant and may play glo bal roles in chromosome fluidity and function. Others are more rare and specialized for specific functions at discreet loci. Moreover, several complexes share biochemical activities and genetic studies suggest overlapping functions in vivo. Many components of these complexes were first revealed in genetic screens, while others were discovered by novel cell biological or biochemical approaches.