Download Free The Fundamental Force Book in PDF and EPUB Free Download. You can read online The Fundamental Force and write the review.

Gauge fields are the messengers carrying signals between elementary particles, enabling them to interact with each other. Originating at the level of quarks, these basic interactions percolate upwards, through nuclear and atomic physics, through chemical and solid state physics, to make our everyday world go round. This book tells the story of gauge fields, from Maxwell's 1860 theory of electromagnetism to the 1954 theory of Yang and Mills that underlies the Standard Model of elementary particle theory. In the course of the narration, the author introduces people and events in experimental and theoretical physics that contribute to ideas that have shaped our conception of the physical world.
In physics, the fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four conventionally accepted fundamental interactions-gravitational, electromagnetic, strong, and weak. Each one is described mathematically as a field. The gravitational force is modelled as a continuous classical field. The other three, part of the Standard Model of particle physics, are described as discrete quantum fields, and their interactions are each carried by a quantum, an elementary particle. The strong and weak interactions have short ranges, producing forces at minuscule, subatomic distances; these forces govern nuclear interactions. The strong interaction, which is carried by the gluon particle, is responsible for the binding of quarks together to form hadrons, such as protons and neutrons. As a residual effect, it creates the nuclear force that binds the latter particles to form atomic nuclei. The weak interaction, which is carried by the W and Z particles, also acts on the nucleus, mediating radioactive decay. The other two, electromagnetism and gravity, produce significant forces at macroscopic scales where the effects can be seen directly in everyday life. The electromagnetic force, carried by the photon, creates electric and magnetic fields, which are responsible for chemical bonding and are used in electrical technology. Electromagnetic forces tend to cancel each other out when large collections of objects are considered, so over the largest distances (on the scale of planets and galaxies), gravity tends to be the dominant force. All four fundamental forces are believed to be related, and to unite into a single force at high energies on a minuscule scale, the Planck scale, but particle accelerators cannot produce the enormous energies required to experimentally probe this. A goal of theoretical physicists working beyond the Standard Model is to quantize the gravitational field, yielding a theory of quantum gravity (QG) which would unite gravity in a common theoretical framework with the other three forces. Other theorists seek to unite the electroweak and strong fields within a Grand Unified Theory (GUT). Some theories, notably string theory, seek both QG and GUT within one framework, unifying all four fundamental interactions along with mass generation within a theory of everything (ToE). A few researchers have interpreted various anomalous observations in physics as evidence for a fifth force, but this is not widely accepted. This book is designed to be a state of the art, superb academic reference work and provide an overview of the topic and give the reader a structured knowledge to familiarize yourself with the topic at the most affordable price possible. The accuracy and knowledge is of an international viewpoint as the edited articles represent the inputs of many knowledgeable individuals and some of the most current knowledge on the topic, based on the date of publication.
Paul Adrian Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. His college, St John's College, Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This 1990 volume includes an expanded version of the third Dirac Memorial Lecture presented by Abdus Salam.
The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.
Albert Einstein discovered that the motion of all objects in the universe is determined by the structure of space. In The Fundamental Force, author and computer scientist Len Kurzawa reveals the structure of space, and how this structure leads to an understanding of the universe. With charts, tables, and illustrations, The Fundamental Force provides a step-by-step understanding of what is happening in the universe. With this understanding, unsolved mysteries can now be explained. It discusses: How gravity works Why the motion of bodies in space follows a pattern Why galaxies rotate like solid objects How galaxies are made and where the matter comes from to make them How the structure of space determines the structure of objects in space The true nature of tides Why planets transition from elliptical to circular orbits Why there is a precession of their orbits How the forces of nature are derived from the one fundamental force Presenting a unique and thoughtful view of the universes origin and future, The Fundamental Force changes the way the universe is viewed.
Intermolecular and Surface Forces describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems - Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels - Multidisciplinary approach: bringing together and unifying phenomena from different fields - This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)
During the last years of his life Einstein tried unsuccessfully to unify electromagnetic force with gravitational force geometrically. The nearest he got was through the ideas of Kaluza and Klein who appended a tiny fifth commuting coordinate to spacetime. Researchers have followed in those footsteps by adding at least six more such minuscule coordinates so as to incorporate the other forces of nature, culminating in string theory — which has unfortunately not met with experimental support. Other proposals have likewise failed or are still waiting to be confirmed experimentally.The author shows that one can successfully unify gravity with electromagnetism geometrically by adding a single complex anticommuting coordinate to spacetime, which can be associated with the property of 'electricity'. By adding extra four anticommuting properties ('chromicity' and 'neutrinicity'), associated with strong and weak interactions, one can get a unified picture of all the natural forces and particles including the 'standard model': The whole construct relies upon the full specification of events and automatically allows for replication of particle families. The monograph traces the history of attempts of unification before explaining the author's 'where-when-what' scheme.
This book focuses on the phenomena of inertia and gravitation, one objective being to shed some new light on the basic laws of gravitational interaction and the fundamental nature and structures of spacetime. Chapter 1 is devoted to an extensive, partly new analysis of the law of inertia. The underlying mathematical and geometrical structure of Newtonian spacetime is presented from a four-dimensional point of view, and some historical difficulties and controversies - in particular the concepts of free particles and straight lines - are critically analyzed, while connections to projective geometry are also explored. The relativistic extensions of the law of gravitation and its intriguing consequences are studied in Chapter 2. This is achieved, following the works of Weyl, Ehlers, Pirani and Schild, by adopting a point of view of the combined conformal and projective structure of spacetime. Specifically, Mach’s fundamental critique of Newton’s concepts of ‘absolute space’ and ‘absolute time’ was a decisive motivation for Einstein’s development of general relativity, and his equivalence principle provided a new perspective on inertia. In Chapter 3 the very special mathematical structure of Einstein’s field equations is analyzed, and some of their remarkable physical predictions are presented. By analyzing different types of dragging phenomena, Chapter 4 reviews to what extent the equivalence principle is realized in general relativity - a question intimately connected to the ‘new force’ of gravitomagnetism, which was theoretically predicted by Einstein and Thirring but which was only recently experimentally confirmed and is thus of current interest.
Why the force that keeps our feet on the ground holds the key to understanding the nature of time and the origin of the universe. Gravity is the weakest force in the everyday world yet it is the strongest force in the universe. It was the first force to be recognized and described yet it is the least understood. It is a "force" that keeps your feet on the ground yet no such force actually exists. Gravity, to steal the words of Winston Churchill, is "a riddle, wrapped in a mystery, inside an enigma." And penetrating that enigma promises to answer the biggest questions in science: what is space? What is time? What is the universe? And where did it all come from? Award-winning writer Marcus Chown takes us on an unforgettable journey from the recognition of the "force" of gravity in 1666 to the discovery of gravitational waves in 2015. And, as we stand on the brink of a seismic revolution in our worldview, he brings us up to speed on the greatest challenge ever to confront physics.
A history of the attempts to test the predictions of Newtonian Gravity, describing in detail recent experimental efforts to verify both the inverse-square law and the Equivalence Principle. Interest in these questions has increased in recent years, as it has become recognised that deviations from Newtonian gravity could be a signal for a new fundamental force in nature. This is the first book devoted entirely to this subject, and will thus be useful to both graduate students and researchers interested in this field. It describes the ideas that underlie searches for such deviations, focusing on macroscopic tests. A comprehensive bibliography of some 450 entries supplements the text.