Download Free The Functions Disease Related Dysfunctions And Therapeutic Targeting Of Neuronal Mitochondria Book in PDF and EPUB Free Download. You can read online The Functions Disease Related Dysfunctions And Therapeutic Targeting Of Neuronal Mitochondria and write the review.

Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.
This book presents advances in the field of neuronal mitochondria – functions, relation to therapeutics, and pharmacology. For scientists and researchers in both industry and academia, this book provides detailed discussion, examples, and approaches, to illustrate the potential of mitochondria as therapeutic targets for neuronal diseases. • Helps readers understand the regulation of mitochondrial cellular processes, such as substrate metabolism, energy production, and programmed versus sporadic cell death • Offers insights on the development of strategies for targeted therapeutic approaches and potential personalized treatments • Includes examples of mitochondrial drugs, development, and mitochondria-targeted approaches for more efficient treatment methods and further developments in the field • Covers the model systems and approaches needed for the development of new drugs for the central nervous system to provide potential modern therapeutics for neurodegenerative disorders
Autism spectrum disorders are developmental disorders. Individuals with autism spectrum disorders develop differently. These differences are usually present in social interaction, communication, and sensory processing, and become visible through a wide variety of behavioral responses that differ from individuals without autism spectrum disorders. Despite significant research efforts, the exact causes of autism spectrum disorders remain poorly understood; however, researchers have gained extensive insights into possible pathomechanisms, even at the molecular level of cells. Many diagnostic criteria have been developed, adapted, and improved. The eight chapters in this book highlight the current state-of-the-art in many areas of autism spectrum disorders. Chapter 1 provides an overview of the epidemiology of autism spectrum disorders and the current knowledge of the underlying pathogenic mechanisms. Chapter 2 summarizes the diagnostic criteria and procedures and highlights present and upcoming therapeutic strategies. Chapter 3 reviews the adverse events and trauma in people with autism spectrum disorders. Chapters 4 and 5 focus on atypical sensory processing, and Chapter 6 discusses the genetic overlap of autism spectrum disorders with other neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD), depression, and schizophrenia. Chapter 7 focuses on the contribution of abnormalities in mitochondria, and chapter 8 discusses gut-brain interactions and a potential role for microbiota in autism spectrum disorders. This book is aimed primarily at clinicians and scientists, but many areas will also be of interest to the layperson.
This book provides the first modern and truly comprehensive coverage of the biochemistry, genetics, and pathology of mitochondria in different organisms. It particularly focuses on the recent advances in our understanding of basic mitochondrial research to the consequences of dysfunction at the molecular level. (Cover)
This volume examines the role of mitochondria in different types of cell death, including apoptotic and necrotic cell deaths. Topics discussed include mitochondrial outer membrane permeabilization (MOMP) and the permeability transition pore; core processes such as calcium handling, fission and fusion, reactive oxygen species generation, and maintenance of mitochondrial DNA fidelity and protein folding homeostasis; and retrograde signaling between mitochondria and other cellular components, including the important role of mitochondria in antiviral immunity. The expertly authored chapters are drawn from multidisciplinary international perspectives, lending a nuanced and comprehensive approach to the material. Mitochondria and Cell Death, part of the Cell Death in Biology and Diseases series, is invaluable reading for graduate students, researchers, and clinicians in the fields of neuroscience, oncology, gastroenterology, and hepatology, as well as those interested in the study of mitochondria and cell biology.
This book is a printed edition of the Special Issue "Mitochondrial Dysfunction in Ageing and Diseases" that was published in IJMS
As age related diseases increase in prevalence and impact more significantly on medical resources it is imperative to understand these diseases and the mechanisms behind their progression. New research has stimulated a growing interest in mitochondrial involvement in neurodegenerative disorders such as Parkinson’s disease, Alzheimer’s disease and multiple sclerosis and the mechanisms which lead from mitochondrial dysfunction to neurodegeneration. Mitochondrial Dysfunction in Neurodegenerative Disorders brings together contributions from leaders in the field internationally on the various ways in which mitochondrial dysfunction contributes to the pathogenesis of these diseases, guiding the reader through the basic functions of mitochondria and the mechanisms that lead to their dysfunction, to the consequences of this dysfunction on neuronal function before finishing with the modelling of these disorders and discussion of new potential therapeutic targets. Mitochondrial Dysfunction in Neurodegenerative Disorders provides an accessible, authoritative guide to this important area for neurologists; research and clinical neuroscientists; neuropathologists; and residents with an interest in clinical research.
Features that characterize the aging process include the gradual accumulation of cell damage after prolonged exposure to oxidative and inflammatory events over a lifetime. In addition to the accretion of lesions, the intrinsic levels of pro-oxidant and aberrant immune responses are elevated with age. These adverse events are often further enhanced by the chronic and slow progressing diseases that characterize the senescent brain and cardiovascular system. The incidence of some disorders such as Alzheimer's disease and vascular diseases are sufficiently prevalent in the extreme elderly that these disorders can arguably be considered "normal". Aging and Aging-Related Disorders examines the interface between normal and pathological aging, and illustrates how this border can sometimes be diffuse. It explores and illustrates the processes underlying the means by which aging becomes increasingly associated with inappropriate levels of free radical activity and how this can serve as a platform for the progression of age-related diseases. The book provides chapters that examine the interactive relationship between systems in the body that can enhance or sometimes even limit cellular longevity. In addition, specific redox mechanisms in cells are discussed. Another important aspect for aging discussed here is the close relationship between the systems of the body and exposure to environmental influences of oxidative stress that can affect both cellular senescence and a cell’s nuclear DNA. What may be even more interesting to note is that these external stressors are not simply confined to illnesses usually associated with aging, but can be evident in maturing and young individuals. A broad range of internationally recognized experts have contributed to this book. Their aim is to successfully highlight emerging knowledge and therapy for the understanding of the basis and development of aging–related disorders.
Mitochondria have traditionally been associated with metabolic functions; however recent research has uncovered a central role for these organelles in cell signaling, cell survival, and cell death. Mitochondrial dysfunction is a factor in a myriad of pathophysiological conditions, including age-related neurodegenerative disorders, cancer, metabolic
Cyclin Dependent Kinase 5 provides a comprehensive and up-to-date collection of reviews on the discovery, signaling mechanisms and functions of Cdk5, as well as the potential implication of Cdk5 in the treatment of neurodegenerative diseases. Since the identification of this unique member of the Cdk family, Cdk5 has emerged as one of the most important signal transduction mediators in the development, maintenance and fine-tuning of neuronal functions and networking. Further studies have revealed that Cdk5 is also associated with the regulation of neuronal survival during both developmental stages and in neurodegenerative diseases. These observations indicate that precise control of Cdk5 is essential for the regulation of neuronal survival. The pivotal role Cdk5 appears to play in both the regulation of neuronal survival and synaptic functions thus raises the interesting possibility that Cdk5 inhibitors may serve as therapeutic treatment for a number of neurodegenerative diseases.