Download Free The Formation And Characteristics Of A Broad Area Semiconductor Field Emission Cathode Book in PDF and EPUB Free Download. You can read online The Formation And Characteristics Of A Broad Area Semiconductor Field Emission Cathode and write the review.

The work is a study of the formation, operation and application of a semiconductor field emission cathode consisting of one or more individual emitting points on a broad area cathode. The material primarily used was germanium. Two methods of forming these cathodes were studied; a vacuum breakdown method and one using radiation from a pulsed ruby laser focused on the cathode surface. The former is the method by which the cathode was first revealed. The latter holds the most promise for making cathodes practical. Both types of cathodes were observed with a scanning electron microscope to aid in understanding the mechanism by which the very regular emitting points are formed. The electrical characteristics of the cathode were studied experimentally and found to agree with theory of semiconductor field emission. A retarding potential analyzer was designed and built to measure the energy distribution for electrons emitted from individual points on the cathode. An electron optical system was used to study the operation of the semiconductor cathode as an electron source for such applications as in a cathode ray tube or similar device requiring a low-current electron beam. (Author).
Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments. This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: • In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. • Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. • Unique coverage of quantum physical results for electron-field emission and novel electron sources with quantum effects, relevant for many applications such as electron microscopy, electron lithography, imaging and communication systems and signal processing. • New approaches for realization of electron sources with required and optimal parameters in electronic devices such as vacuum micro and nanoelectronics. This is an essential reference for researchers working in terahertz technology wanting to expand their knowledge of electron beam generation in vacuum and electron source quantum concepts. It is also valuable to advanced students in electronics engineering and physics who want to deepen their understanding of this topic. Ultimately, the progress of the quantum nanostructure theory and technology will promote the progress and development of electron sources as main part of vacuum macro-, micro- and nanoelectronics.
This monograph solely presents the Fowler-Nordheim field emission (FNFE) from semiconductors and their nanostructures. The materials considered are quantum confined non-linear optical, III-V, II-VI, Ge, Te, carbon nanotubes, PtSb2, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V, Bi2Te3, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization and quantum wires of the aforementioned superlattices. The FNFE in opto-electronic materials and their quantum confined counterparts is studied in the presence of light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The importance of band gap measurements in opto-electronic materials in the presence of external fields is discussed from this perspective. This monograph contains 200 open research problems which form the very core and are useful for Ph. D students and researchers. The book can also serve as a basis for a graduate course on field emission from solids.