Download Free The First Results From Soho Book in PDF and EPUB Free Download. You can read online The First Results From Soho and write the review.

The Solar and Heliospheric Observatory (SOHO) is a joint ESA/NASA mission to study the Sun, from its deep core to the outer corona, and the solar wind. SOHO was launched on 2 December 1995 and was inserted into a halo orbit around the L1 Lagrangian point on 14 February 1996. From this vantage point it is continuously monitoring the Sun, the heliosphere, and the solar wind particles that stream toward the Earth. Nominal operations of the SOHO mission started in April 1996 after commissioning of the spacecraft and the scientific payload. Detailed descriptions of the twelve instruments, which represent the most comprehensive set of solar and heliospheric instruments ever developed and placed on the same platform, can be found in The SOHO Mission (Solar Physics, Vol. 162, Nos. 1-2, 1995). This volume contains papers reporting the first scientific results from the SOHO mission as well as descriptions of the in-flight performance of some of the instruments, published in two parts of a Solar Physics special (Part I in Solar Physics, Vol. 170, No. 1; Part II in Solar Physics, Vol. 175, No. 2). Unique data from the three helioseismology instruments (GOLF, VIRGO, MDI/SOI) provide new insights into the structure and dynamics of the solar interior, from the deep core to the outermost layers of the convection zone. The remote sensing instruments (SUMER, CDS, EIT, LASCO, UVCS, SWAN) present exciting new data on a wide range of topics such as transition region dynamics, coronal plumes, coronal holes, streamers, and coronal mass ejections, giving us our first comprehensive view of the outer solar atmosphere and corona. These data are complemented by energetic particle measurements produced by the ERNE instrument on board SOHO.
The First Edition of The Sun from Space, completed in 1999, focused on the early accomplishments of three solar spacecraft, SOHO, Ulysses, and Yohkoh, primarily during a minimum in the Sun’s 11-year cycle of magnetic activity. The comp- hensive Second Edition includes the main ndings of these three spacecraft over an entire activity cycle, including two minima and a maximum, and discusses the signi cant results of six more solar missions. Four of these, the Hinode, RHESSI, STEREO, and TRACE missions were launched after the First Edition was either nished or nearly so, and the other two, the ACE and Wind spacecraft, extend our investigations from the Sun to its varying input to the Earth. The Second Edition does not contain simple updates or cosmetic patch ups to the material in the First Edition. It instead contains the relevant discoveries of the past decade, integrated into chapters completely rewritten for the purpose. This provides a fresh perspective to the major topics of solar enquiry, written in an enjoyable, easily understood text accessible to all readers, from the interested layperson to the student or professional.
Since its launch in 1991, the Yohkoh satellite has been returning unprecedented observations of solar flares and the dynamic solar corona. This book is a collection of papers presented at a meeting held in: Yoyogi, Tokyo, on the occasion of Yohkoh's fifth anniversary of operation. The papers constitute a summary of observations and results over the five years, including contributions based on data from Yohkoh's hard and soft X-ray telescopes and its spectrometer experiments. The five years of data, covering approximately one-half of a solar cycle, reveal a fresh perspective on solar science, with a new picture of solar flares and the active Sun emerging. Also, for the first time there are extensive results from Yohkoh observations of the Sun during the solar minimum period. This wide-ranging volume will be of interest to workers in solar physics and X-ray astronomy. It also contains material appropriate for supplemental reading for graduate students in solar physics.
An extensively illustrated account of the development and achievements of astronomical observations from space since WWII.
This book contains the proceedings of the Summerschool and Workshop Motions in the Solar Atmosphere held from September 1st to September 12th, 1997, at the Solar Observatory Kanzelh6he, which belongs to the Astronomical Institute of the University of Graz, Austria. This type of conference has proved to be very successful in bringing together experts from specialized topics in solar physics and young scientists and students from different countries. Moreover, the summerschool was accompanied by a workshop which offered young scientists the opportunity to present their new results to a general audience. In total the summerschool and the workshop were attended by 50 par ticipants from 10 different countries. The topic selected was quite general, covering the whole solar atmo sphere and its dynamic processes: from dynamo actions and large and small scale motions in the photosphere through the complex dynamics of the chro mosphere to the corona. Also the possible influences of variations in solar output parameters to the Earth's climate were addressed. The main lec tures were given by 7 lecturers. Furthermore, there were 20 contributions to the workshop which were presented in oral form. The selection of the Kanzelh6he Solar Observatory located in Central Europe, Austria, also permitted colleagues from the former eastern coun tries to attend the meeting. At the Kanzelh6he Observatory new instru ments had been recently installed so that the meeting provided a further stimulus for the local people working there.
One of the most attractive features of the young discipline of Space Science is that many of the original pioneers and key players involved are still available to describe their field. Hence, at this point in history we are in a unique position to gain first-hand insight into the field and its development. To this end, The Century of Space Science, a scholarly, authoritative, reference book presents a chapter-by-chapter retrospective of space science as studied in the 20th century. The level is academic and focuses on key discoveries, how these were arrived at, their scientific consequences and how these discoveries advanced the thoughts of the key players involved. With over 90 world-class contributors, such as James Van Allen, Cornelis de Jager, Eugene Parker, Reimar Lüst, and Ernst Stuhlinger, and with a Foreword by Lodewijk Woltjer (past ESO Director General), this book will be immensely useful to readers in the fields of space science, astronomy, and the history of science. Both academic institutions and researchers will find that this major reference work makes an invaluable addition to their collection.
The discovery of chemical elements in celestial bodies and the first estimates of the chemical composition of the solar atmosphere were early results of Astrophysics - the subdiscipline of Astronomy that was originally concerned with the general laws of radiation and with spectroscopy. Following the initial quantitative abundance studies by Henry Norris Russell and by Cecilia Payne-Gaposchkin, a tremendous amount of theoretical, observa tional, laboratory and computational work led to a steadily improving body of knowledge of photospheric abundances - a body of knowledge that served to guide the theory of stellar evolution. Solar abundances determined from photospheric spectra, together with the very similar abundances determined from carbonaceous chondrites (where extensive information on isotopic composition is available as well), are nowadays the reference for all cosmic composition measures. Early astrophysical studies of the solar photospheric composition made use of atmosphere models and atomic data. Consistent abundances derived from different atmospheric layers and from lines of different strength helped to confirm and estab lish both models and atomic data, and eventually led to the now accepted, so-called "absolute" abundance values - which, for practical reasons, however, are usually given relative to the number of hydrogen nuclei.
Novel instruments for high-precision imaging polarimetry have opened new possibilities, including for exploring effects in radiative scattering, atomic physics, spectral line formation, and radiative transfer. This volume gives a comprehensive and up-to-date account of this rapidly evolving and interdisciplinary field of science.
The SOHO-7 Workshop was held from 28 September through 1 October 1998 at the Asticou Inn in Northeast Harbor, Maine. The primary topic of this Workshop was the impact of SOHO observations on our understanding of the nature and evolution of coronal holes and the acceleration and composition of the solar wind. The presentations and discussions occasionally went beyond this topic to include the impact of the reported research on other solar structures and the heliosphere. SOHO (the Solar and Heliospheric Observatory), a project of international cooperation between ESA and NASA, was launched in December 1995 and began its science operations during the first few months of 1996. To many solar and space physicists, it was a great advantage that SOHO began itscomprehensive look at the Sun during the 1996 solar minimum. The qualitatively simple two-phase corona, with polar coronal holes expanding into the high-speed solar wind, and a steady equatorial streamer belt related somehow to the stochastic slow-speed solar wind, allowed various SOHO diagnostics to be initiated with a reasonably well understoodcircumsolar geometry. The analysis of subsequentSOHO measurements made during the rising phase of solar cycle 23 will continue to benefit from what has been learned from the first two years of data.