Download Free The First Course Book in PDF and EPUB Free Download. You can read online The First Course and write the review.

When four life-altering catastrophes hit in just one day-including the loss of her parents in a tragic plane crash-twenty-four-year-old Janie Whitman retreats to her family's summer house in Cape Elizabeth, Maine. Here she tries to provide stability for her older sister Alyssa and two young nieces by cooking them amazing food.Through a mix-up with the alumni office at her parents' alma mater, Janie meets a young high school guidance counselor named Rocky at a volunteer event, and their fast-tracked romance helps Janie to see possibilities beyond the life she had known just a few weeks prior. But with her ex-boyfriend (and former boss) making overtures beyond her wildest dreams, as well as Alyssa's estranged husband willing to do whatever it takes to win her back, the Whitman sisters are faced with big decisions.Despite the obstacles in their way, when Janie and Alyssa are tasked with establishing a lasting memorial for their parents, they just might find the second acts they are seeking.
This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.
This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.
From the reviews "This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." --Mathematical Gazette
This book provides an up-to-date introduction to information theory. In addition to the classical topics discussed, it provides the first comprehensive treatment of the theory of I-Measure, network coding theory, Shannon and non-Shannon type information inequalities, and a relation between entropy and group theory. ITIP, a software package for proving information inequalities, is also included. With a large number of examples, illustrations, and original problems, this book is excellent as a textbook or reference book for a senior or graduate level course on the subject, as well as a reference for researchers in related fields.
Introduces the main algorithms and ideas that underpin machine learning techniques and applications Keeps mathematical prerequisites to a minimum, providing mathematical explanations in comment boxes and highlighting important equations Covers modern machine learning research and techniques Includes three new chapters on Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models Offers Python, R, and MATLAB code on accompanying website: http://www.dcs.gla.ac.uk/~srogers/firstcourseml/"
Students must prove all of the theorems in this undergraduate-level text, which features extensive outlines to assist in study and comprehension. Thorough and well-written, the treatment provides sufficient material for a one-year undergraduate course. The logical presentation anticipates students' questions, and complete definitions and expositions of topics relate new concepts to previously discussed subjects. Most of the material focuses on point-set topology with the exception of the last chapter. Topics include sets and functions, infinite sets and transfinite numbers, topological spaces and basic concepts, product spaces, connectivity, and compactness. Additional subjects include separation axioms, complete spaces, and homotopy and the fundamental group. Numerous hints and figures illuminate the text. Dover (2014) republication of the edition originally published by The Williams & Wilkins Company, Baltimore, 1975. See every Dover book in print at www.doverpublications.com
Suitable for college courses, this introductory text covers the language of mathematics, geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, and space and coordinate geometry. 1974 edition.
Providing students with a more understandable introduction to logic without sacrificing rigor, A First Course in Logic presents topics and methods in a highly accessible and integrated manner. By integrating and comparing topics throughout and using the same examples in different chapters, the author shows the utility and limitations of each method of logic. Consistent pedagogical structure helps students learn and study better; the introduction now emphasizes strategies and tactics for applying memorization rules. One-of-a-kind LSAT-type exercises apply logic to pre-professional exams. This Gold Edition of the text now uses more standard notation and has been thoroughly class-tested and revised for absolute accuracy of information.
Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.