Download Free The Finite Element Method In Charged Particle Optics Book in PDF and EPUB Free Download. You can read online The Finite Element Method In Charged Particle Optics and write the review.

In the span of only a few decades, the finite element method has become an important numerical technique for solving problems in the subject of charged particle optics. The situation has now developed up to the point where finite element simulation software is sold commercially and routinely used in industry. The introduction of the finite element method in charged particle optics came by way of a PHD thesis written by Eric Munro at the University of Cambridge, England, in 1971 [1], shortly after the first papers appeared on its use to solve Electrical Engineering problems in the late sixties. Although many papers on the use of the finite element method in charged particle optics have been published since Munro's pioneering work, its development in this area has not as yet appeared in any textbook. This fact must be understood within a broader context. The first textbook on the finite element method in Electrical Engineering was published in 1983 [2]. At present, there are only a handful of other books that describe it in relation to Electrical Engineering topics [3], let alone charged particle optics. This is but a tiny fraction of the books dedicated to the finite element method in other subjects such as Civil Engineering. The motivation to write this book comes from the need to redress this imbalance. There is also another important reason for writing this book.
In the span of only a few decades, the finite element method has become an important numerical technique for solving problems in the subject of charged particle optics. The situation has now developed up to the point where finite element simulation software is sold commercially and routinely used in industry. The introduction of the finite element method in charged particle optics came by way of a PHD thesis written by Eric Munro at the University of Cambridge, England, in 1971 [1], shortly after the first papers appeared on its use to solve Electrical Engineering problems in the late sixties. Although many papers on the use of the finite element method in charged particle optics have been published since Munro's pioneering work, its development in this area has not as yet appeared in any textbook. This fact must be understood within a broader context. The first textbook on the finite element method in Electrical Engineering was published in 1983 [2]. At present, there are only a handful of other books that describe it in relation to Electrical Engineering topics [3], let alone charged particle optics. This is but a tiny fraction of the books dedicated to the finite element method in other subjects such as Civil Engineering. The motivation to write this book comes from the need to redress this imbalance. There is also another important reason for writing this book.
With the growing proliferation of nanotechnologies, powerful imaging technologies are being developed to operate at the sub-nanometer scale. The newest edition of a bestseller, the Handbook of Charged Particle Optics, Second Edition provides essential background information for the design and operation of high resolution focused probe instruments. The book’s unique approach covers both the theoretical and practical knowledge of high resolution probe forming instruments. The second edition features new chapters on aberration correction and applications of gas phase field ionization sources. With the inclusion of additional references to past and present work in the field, this second edition offers perfectly calibrated coverage of the field’s cutting-edge technologies with added insight into how they work. Written by the leading research scientists, the second edition of the Handbook of Charged Particle Optics is a complete guide to understanding, designing, and using high resolution probe instrumentation.
Electron Microscopy and Analysis 1997 celebrates the centenary anniversary of the discovery of the electron by J.J. Thomson in Cambridge and the fiftieth anniversary of this distinguished Institute group. The book includes papers on the early history of electron microscopy (from P. Hawkes), the development of the scanning electron microscope at Cambridge (from K. Smith), electron energy loss spectroscopy (from L.M. Brown), imaging methods (from J. Spence), and the future of electron microscopy (from C. Humphreys). Covering a wide range of applications of advanced techniques, it discusses electron imaging, electron energy-loss and x-ray analysis, and scanning probe and electron beam microscopies. This volume is a handy reference for professionals using microscopes in all areas of physics, materials science, metallurgy, and surface science to gain an overview of developments in our understanding of materials microstructure and of advances in microscope interrogation techniques.
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton’s principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern-Gerlach effect is revisited for atomic and free electrons.
Originally published: New York: J. Wiley, c1986.
Volume one of Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instruments: cathode-ray tubes; the family of electron microscopes, including the fixed-beam and scanning transmission instruments, the scanning electron microscope and the emission microscope; electron spectrometers and mass spectrograph; image converters; electron interferometers and diffraction devices; electron welding machines; and electron-beam lithography devices. The book provides a self-contained, detailed, modern account of electron optics for anyone involved with particle beams of modest current density in the energy range up to a few mega-electronvolts. You will find all the basic equations with their derivations, recent ideas concerning aberration studies, extensive discussion of the numerical methods needed to calculate the properties of specific systems and guidance to the literature of all the topics covered. A continuation of these topics can be found in volume two, Principles of Electron Optics: Applied Geometrical Optics. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography. - Offers a fully revised and expanded new edition based on the latest research developments in electron optics - Written by the top experts in the field - Covers every significant advance in electron optics since the subject originated - Contains exceptionally complete and carefully selected references and notes - Serves both as a reference and text
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.