Download Free The Fermat Diary Book in PDF and EPUB Free Download. You can read online The Fermat Diary and write the review.

This book concentrates on the final chapter of the story of perhaps the most famous mathematics problem of our time: Fermat's Last Theorem. The full story begins in 1637, with Pierre de Fermat's enigmatic marginal note in his copy of Diophantus's Arithmetica. It ends with the spectacular solution by Andrew Wiles some 350 years later. The Fermat Diary provides a record in pictures and words of the dramatic time from June 1993 to August 1995, including the period when Wiles completed the last stages of the proof and concluding with the mathematical world's celebration of Wiles' result at Boston University. This diary takes us through the process of discovery as reported by those who worked on the great puzzle: Gerhard Frey who conjectured that Shimura-Taniyama implies Fermat; Ken Ribet who followed a difficult and speculative plan of attack suggested by Jean-Pierre Serre and established the statement by Frey; and Andrew Wiles who announced a proof of enough of the Shimura-Taniyama conjecture to settle Fermat's Last Theorem, only to announce months later that there was a gap in the proof. Finally, we are brought to the historic event on September 19, 1994, when Wiles, with the collaboration of Richard Taylor, dramatically closed the gap. The book follows the much-in-demand Wiles through his travels and lectures, finishing with the Instructional Conference on Number Theory and Arithmetic Geometry at Boston University. There are many important names in the recent history of Fermat's Last Theorem. This book puts faces and personalities to those names. Mozzochi also uncovers the details of certain key pieces of the story. For instance, we learn in Frey's own words the story of his conjecture, about his informal discussion and later lecture at Oberwolfach and his letter containing the actual statement. We learn from Faltings about his crucial role in the weeks before Wiles made his final announcement. An appendix contains the Introduction of Wiles' Annals paper in which he describes the evolution of his solution and gives a broad overview of his methods. Shimura explains his position concerning the evolution of the Shimura-Taniyama conjecture. Mozzochi also conveys the atmosphere of the mathematical community--and the Princeton Mathematics Department in particular--during this important period in mathematics. This eyewitness account and wonderful collection of photographs capture the marvel and unfolding drama of this great mathematical and human story.
Sophie Germain overcame gender stigmas and a lack of formal education to prove that for all prime exponents less than 100 Case I of Fermat's Last Theorem holds. Hidden behind a man's name, her brilliance as mathematician was first discovered by three of the greatest scholars of the eighteenth century, Lagrange, Gauss, and Legendre. In Sophie's Diary, Germain comes to life through a fictionalized journal that intertwines mathematics with historical descriptions of the brutal events that took place in Paris between 1789 and 1793. This format provides a plausible perspective of how a young Sophie could have learned mathematics on her own—both fascinated by numbers and eager to master tough subjects without a teacher's guidance. Her passion for mathematics is integrated into her personal life as an escape from societal outrage. Sophie's Diary is suitable for a variety of readers—both young and old, mathematicians and novices—who will be inspired and enlightened on a field of study made easy, as told through the intellectual and personal struggles of an exceptional young woman.
Lecture I The Early History of Fermat's Last Theorem.- 1 The Problem.- 2 Early Attempts.- 3 Kummer's Monumental Theorem.- 4 Regular Primes.- 5 Kummer's Work on Irregular Prime Exponents.- 6 Other Relevant Results.- 7 The Golden Medal and the Wolfskehl Prize.- Lecture II Recent Results.- 1 Stating the Results.- 2 Explanations.- Lecture III B.K. = Before Kummer.- 1 The Pythagorean Equation.- 2 The Biquadratic Equation.- 3 The Cubic Equation.- 4 The Quintic Equation.- 5 Fermat's Equation of Degree Seven.- Lecture IV The Naïve Approach.- 1 The Relations of Barlow and Abel.- 2 Sophie Germain.- 3 Co.
This is a kaleidoscopic account of the remarkable life story of Alladi Ramakrishnan (1923-2008), an internationally reputed physicist, and the son of Sir Alladi Krishnaswami Iyer (1883-1953), one of India's most eminent jurists.Part I of the autobiography gives a fascinating account his early life in Madras, India during the last decades of British colonial rule, and the leading role played by Sir Alladi in drafting the Constitution of India. Then follows the incredible saga of his creation of MATSCIENCE, The Institute of Mathematical Sciences, in Madras, inspired by his visit to the Institute for Advanced Study in Princeton, and the result of a Theoretical Physics Seminar which he organized in his family home Ekamra Nivas in Madras, which received the endorsement of Nobel Laureate Niels Bohr, and the support of India's Prime Minister Jawaharlal Nehru.Part II covers the period of Ramakrishnan's term as Director of MATSCIENCE, and his visits to about 200 centres of learning the world over, where he interacted with leading scientists and lectured on his research in the fields of Probability, Stochastic Processes, Elementary Particle Physics, Matrix Theory, and on his novel treatment of Einstein's Special Relativity. Historical photos, letters, and documents of special interest are included.
In 2010, French mathematician Cédric Villani received the Fields Medal, the most coveted prize in mathematics, in recognition of a proof which he devised with his close collaborator Clément Mouhot to explain one of the most surprising theories in classical physics. Birth of aTheorem is Villani's own account of the years leading up to the award. It invites readers inside the mind of a great mathematician as he wrestles with the most important work of his career. But you don't have to understand nonlinear Landau damping to love Birth of aTheorem. It doesn't simplify or overexplain; rather, it invites readers into collaboration. Villani's diaries, emails, and musings enmesh you in the process of discovery. You join him in unproductive lulls and late-night breakthroughs. You're privy to the dining-hall conversations at the world's greatest research institutions. Villani shares his favorite songs, his love of manga, and the imaginative stories he tells his children. In mathematics, as in any creative work, it is the thinker's whole life that propels discovery—and with Birth of aTheorem, Cédric Villani welcomes you into his.
Each summer six math whizzes selected from nearly a half-million American teens compete against the world's best problem solvers at the International Mathematical Olympiad.Steve Olson followed the six 2001 contestants from the intense tryouts to the Olympiad's nail-biting final rounds to discover not only what drives these extraordinary kids but what makes them both unique and typical.In the process he provides fascinating insights into the science of intelligence and learning and, finally, the nature of genius.Brilliant, but defying all the math-nerd stereotypes, these teens want to excel in whatever piques their curiosity, and they are curious about almost everything - music, games, politics, sports, literature.One team member is ardent about both water polo and creative writing. Another plays four musical instruments.For fun and entertainment during breaks, the Olympians invent games of mind-boggling difficulty.Though driven by the glory of winning this ultimate math contest, they are in many ways not so different from other teenagers, finding pure joy in indulging their personal passions. Beyond the the Olympiad, Olson sheds light on many questions, from why Americans feel so queasy about math, to why so few girls compete in the subject, to whether or not talent is innate.Inside the cavernous gym where the competition takes place, Count Down uncovers a fascinating subculture and its engaging, driven inhabitants.
The Neumann Prize–winning, illustrated exploration of mathematics—from its timeless mysteries to its history of mind-boggling discoveries. Beginning millions of years ago with ancient “ant odometers” and moving through time to our modern-day quest for new dimensions, The Math Book covers 250 milestones in mathematical history. Among the numerous delights readers will learn about as they dip into this inviting anthology: cicada-generated prime numbers, magic squares from centuries ago, the discovery of pi and calculus, and the butterfly effect. Each topic is lavishly illustrated with colorful art, along with formulas and concepts, fascinating facts about scientists’ lives, and real-world applications of the theorems.
The International Conference on Fundamental Sciences: Mathematics and Theoretical Physics provided a forum for reviewing some of the significant developments in mathematics and theoretical physics in the 20th century; for the leading theorists in these fields to expound and discuss their views on new ideas and trends in the basic sciences as the new millennium approached; for increasing public awareness of the importance of basic research in mathematics and theoretical physics; and for promoting a high level of interest in mathematics and theoretical physics among school students and teachers. This was a major conference, with invited lectures by some of the leading experts in various fields of mathematics and theoretical physics.
The International Conference on Fundamental Sciences: Mathematics and Theoretical Physics provided a forum for reviewing some of the significant developments in mathematics and theoretical physics in the 20th century; for the leading theorists in these fields to expound and discuss their views on new ideas and trends in the basic sciences as the new millennium approached; for increasing public awareness of the importance of basic research in mathematics and theoretical physics; and for promoting a high level of interest in mathematics and theoretical physics among school students and teachers. This was a major conference, with invited lectures by some of the leading experts in various fields of mathematics and theoretical physics.
This book comprises five parts. The first three contain ten historical essays on important topics: number theory, calculus/analysis, and proof, respectively. Part four deals with several historically oriented courses, and Part five provides biographies of five mathematicians who played major roles in the historical events described in the first four parts of the work. Excursions in the History of Mathematics was written with several goals in mind: to arouse mathematics teachers’ interest in the history of their subject; to encourage mathematics teachers with at least some knowledge of the history of mathematics to offer courses with a strong historical component; and to provide an historical perspective on a number of basic topics taught in mathematics courses.