Download Free The Federal Role In Energy Research And Development Book in PDF and EPUB Free Download. You can read online The Federal Role In Energy Research And Development and write the review.

Renewable Power Pathways is the result of a study by the National Research Council (NRC) Committee for the Programmatic Review of the Office of Power Technologies (OPT) review of the U.S. Department of Energy's (DOE) Office of Power Technologies and its research and development (R&D) programs. The OPT, which is part of the Office of Energy Efficiency and Renewable Energy, conducts R&D programs for the production of electricity from renewable energy sources. Some of these programs are focused on photovoltaic, wind, solar, thermal, geothermal, biopower, and hydroelectric energy technologies; others are focused on energy storage, electric transmission (including superconductivity), and hydrogen technologies. A recent modest initiative is focused on distributed power-generation technologies. This report reviews the activities of each of OPT's programs and makes recommendations for OPT as a whole and major recommendations for individual OPT programs.
The United States faces a new challengeâ€"maintaining the vitality of its system for supporting science and technology despite fiscal stringency during the next several years. To address this change, the Senate Appropriations Committee requested a report from the National Academies of Sciences and Engineering and the Institute of Medicine to address "the criteria that should be used in judging the appropriate allocation of funds to research and development activities; to examine the appropriate balance among different types of institutions that conduct such research; and to look at the means of assuring continued objectivity in the allocation process." In this eagerly-awaited book, a committee of experts selected by the National Academies and the Institute responds with 13 recommendations that propose a new budgeting process and formulates a series of questions to address during that process. The committee also makes corollary recommendations about merit review, government oversight, linking research and development to government missions, the synergy between research and education, and other topics. The recommendations are aimed at rooting out obsolete and inadequate activities to free resources from good programs for even better ones, in the belief that "science and technology will be at least as important in the future as they have been in the past in dealing with problems that confront the nation." The authoring committee of this book was chaired by Frank Press, former President of the National Academy of Sciences (1981-1993) and Presidential Science and Technology Advisor (1977-1981).
Clean energy innovation is central to the fight against climate change. To rise to this challenge, the United States should launch a National Energy Innovation Mission. Led by the president and authorized by Congress, this mission should harness the nation's unmatched innovative capabilities-at research universities, federal laboratories, and private firms (both large and small), in all regions of the country-to speed the progress of clean energy technologies. To jumpstart this mission and unlock a virtuous cycle of public and private investment, the US federal government should triple its funding for energy research, development, and demonstration (RD&D) over the next five years to $25 billion by 2025. "Energizing America" offers policymakers a strategic framework to build a growing RD&D portfolio over the next five years, detailed fundingproposals across the full spectrum of critical energy technologies, and recommendations for immediate action.
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
The Politics of Energy Research and Development examines and evaluates U.S. research and development policies to promote nuclear, solar, conservation, and other technology options. This volume is the third in the series "Energy Policy Studies, "which explores fundamental, long-term social, political, and economic dimensions of energy technology, resources, and use. Contributions represent a wide range of theoretical and policy perspectives, including sociology, economics, political science, urban and regional studies, environmental analysis, and history and philosophy of technology. Contents: Richard L. Ottinger, "Introduction: The Tragedy of U.S. Energy R&D Policy"; Amor DEGREES B. Lovins, "The Origins of the Nuclear Power Fiasco"; Richard T. Sylves, "Nuclear Exotica: Peaceful Use of Nuclear Explosives"; Eugene Frankel, "Technology, Politics and Ideology: The Vicissitudes of Federal Solar Energy Policy, 1974-1983"; Maxine Savitz, "The Federal Role in Conservation Research and Development"; J. David Roessner, "Commercialization Issues in Energy Technology Policy"; John Byrne and Daniel Rich, "In Search of the Abundant Energy Machine"; and Grant P. Thompson, "Energy Policy in the Interim: Waiting for the Next Shoe to Drop."
The Office of Industrial Technologies (OIT) of the U. S. Department of Energy commissioned the National Research Council (NRC) to undertake a study on required technologies for the Mining Industries of the Future Program to complement information provided to the program by the National Mining Association. Subsequently, the National Institute for Occupational Safety and Health also became a sponsor of this study, and the Statement of Task was expanded to include health and safety. The overall objectives of this study are: (a) to review available information on the U.S. mining industry; (b) to identify critical research and development needs related to the exploration, mining, and processing of coal, minerals, and metals; and (c) to examine the federal contribution to research and development in mining processes.