Download Free The Experimental Determination Of Solubilities Book in PDF and EPUB Free Download. You can read online The Experimental Determination Of Solubilities and write the review.

* Guidelines are provided on the reliability of various methods, as well as information for selecting the appropriate technique. * Unique coverage of the whole range of solubility measurements. * Very useful for investigators interested in embarking upon solubility measurements.
* Guidelines are provided on the reliability of various methods, as well as information for selecting the appropriate technique. * Unique coverage of the whole range of solubility measurements. * Very useful for investigators interested in embarking upon solubility measurements.
Carbon in Earth's fluid envelopes - the atmosphere, biosphere, and hydrosphere, plays a fundamental role in our planet's climate system and a central role in biology, the environment, and the economy of earth system. The source and original quantity of carbon in our planet is uncertain, as are the identities and relative importance of early chemical processes associated with planetary differentiation. Numerous lines of evidence point to the early and continuing exchange of substantial carbon between Earth's surface and its interior, including diamonds, carbon-rich mantle-derived magmas, carbonate rocks in subduction zones and springs carrying deeply sourced carbon-bearing gases. Thus, there is little doubt that a substantial amount of carbon resides in our planet's interior. Yet, while we know it must be present, carbon's forms, transformations and movements at conditions relevant to the interiors of Earth and other planets remain uncertain and untapped. Volume highlights include: - Reviews key, general topics, such as carbonate minerals, the deep carbon cycle, and carbon in magmas or fluids - Describes new results at the frontiers of the field with presenting results on carbon in minerals, melts, and fluids at extreme conditions of planetary interiors - Brings together emerging insights into carbon's forms, transformations and movements through study of the dynamics, structure, stability and reactivity of carbon-based natural materials - Reviews emerging new insights into the properties of allied substances that carry carbon, into the rates of chemical and physical transformations, and into the complex interactions between moving fluids, magmas, and rocks to the interiors of Earth and other planets - Spans the various chemical redox states of carbon, from reduced hydrocarbons to zero-valent diamond and graphite to oxidized CO2 and carbonates - Captures and synthesizes the exciting results of recent, focused efforts in an emerging scientific discipline - Reports advances over the last decade that have led to a major leap forward in our understanding of carbon science - Compiles the range of methods that can be tapped tap from the deep carbon community, which includes experimentalists, first principles theorists, thermodynamic modelers and geodynamicists - Represents a reference point for future deep carbon science research Carbon in Planetary Interiors will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are interdisciplinary, and therefore will be useful to professionals from a wide variety of fields in the Earth Sciences, such as mineral physics, petrology, geochemistry, experimentalists, first principles theorists, thermodynamics, material science, chemistry, geophysics and geodynamics.
Solubility is fundamental to most areas of chemistry and is one of the most basic of thermodynamic properties. It underlies most industrial processes. Bringing together the latest developments and ideas, Developments and Applications in Solubility covers many varied and disparate topics. The book is a collection of work from leading experts in their fields and covers the theory of solubility, modelling and simulation, industrial applications and new data and recent developments relating to solubility. Of particular interest are sections on: experimental, calculated and predicted solubilities; solubility phenomena in 'green' quaternary mixtures involving ionic liquids; molecular simulation approaches to solubility; solubility impurities in cryogenic liquids and carbon dioxide in chemical processes. The book is a definitive and comprehensive reference to what is new in solubility and is ideal for researcher scientists, industrialists and academics
Aqueous solubility is one of the major challenges in the early stages of drug discovery. One of the most common and effective methods for enhancing solubility is the addition of an organic solvent to the aqueous solution. Along with an introduction to cosolvency models, the Handbook of Solubility Data for Pharmaceuticals provides an extensive datab
Supercritical fluid extraction is an environmentally safe and cost-effective alternative to traditional organic solvents. Carbon dioxide is widely used as the solvent of choice for applications such as caffeine and nicotine extraction due to its mild critical temperature, nontoxicity, nonflammability, and low cost. Introducing the most complete col
The objective of this third edition is to consolidate within a single text the most current knowledge, practical methods, and regulatory considerations pertaining to formulations development with poorly water-soluble molecules. A pharmaceutical scientist’s approach toward solubility enhancement of a poorly water-soluble molecule typically includes detailed characterization of the compound’s physiochemical properties, solid-state modifications, advanced formulation design, non-conventional process technologies, advanced analytical characterization, and specialized product performance analysis techniques. The scientist must also be aware of the unique regulatory considerations pertaining to the non-conventional approaches often utilized for poorly water-soluble drugs. One faced with the challenge of developing a drug product from a poorly soluble compound must possess at a minimum a working knowledge of each of the above mentioned facets and detailed knowledge of most. In light of the magnitude of the growing solubility problem to drug development, this is a significant burden especially when considering that knowledge in most of these areas is relatively new and continues to develop.
Volume 33 of Reviews in Mineralogy reviews the Mineralogy, Petrology, and Geochemistry of Boron. Contents: Mineralogy, Petrology and Geochemistry of Boron: An Introduction The Crystal Chemistry of Boron Experimental Studies on Borosilicates and Selected Borates Thermochemistry of Borosilicate Melts and Glasses - from Pyrex to Pegmatites Thermodynamics of Boron Minerals: Summary of Structural, Volumetric and Thermochemical Data Continental Borate Deposits of Cenozoic Age Boron in Granitic Rocks and Their Contact Aureoles Experimental Studies of Boron in Granitic Melts Borosilicates (Exclusive of Tourmaline) and Boron in Rock-forming Minerals in Metamorphic Environments Metamorphic Tourmaline and Its Petrologic Applications Tourmaline Associations with Hydrothermal Ore Deposits Geochemistry of Boron and Its Implications for Crustal and Mantle Processes Boron Isotope Geochemistry: An Overview Similarities and Contrasts in Lunar and Terrestrial Boron Geochemistry Electron Probe Microanalysis of Geologic Materials for Boron Analyses of Geological Materials for Boron by Secondary Ion Mass Spectrometry Nuclear Methods for Analysis of Boron in Minerals Parallel Electron Energy-loss Spectroscopy of Boron in Minerals Instrumental Techniques for Boron Isotope Analysis
Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint