Download Free The Ethics Of Geometry Book in PDF and EPUB Free Download. You can read online The Ethics Of Geometry and write the review.

The Ethics of Geometry is a study of the relationship between philosophy and mathematics. Essential differences in the ethos of mathematics, for example, the customary ways of undertaking and understanding mathematical procedures and their objects, provide insight into the fundamental issues in the quarrel of moderns with ancients. Two signal features of the modern ethos are the priority of problem-solving over theorem-proving, and the claim that constructability by human minds or instruments establishes the existence of relevant entities. These figures are combined in the emblematic statement of Salomon Maimon, "In mathematical construction we are, as it were, gods." Construction is the mark of modernity. The disciplines of classical philology, literary interpretation and the history of philosophy and of mathematics are woven together in this volume.
In a wide-ranging study of the relationship between philosophy and mathematics, Lachterman discussing the importance of construction from Euclid to Kant and his successors.
Autonomous cars, drones, and electronic surveillance systems are examples of technologies that raise serious ethical issues. In this analytic investigation, Martin Peterson articulates and defends five moral principles for addressing ethical issues related to new and existing technologies: the cost-benefit principle, the precautionary principle, the sustainability principle, the autonomy principle, and the fairness principle. It is primarily the method developed by Peterson for articulating and analyzing the five principles that is novel. He argues that geometric concepts such as points, lines, and planes can be put to work for clarifying the structure and scope of these and other moral principles. This geometric account is based on the Aristotelian dictum that like cases should be treated alike, meaning that the degree of similarity between different cases can be represented as a distance in moral space. The more similar a pair of cases are from a moral point of view, the closer is their location in moral space. A case that lies closer in moral space to a paradigm case for some principle p than to any paradigm for any other principle should be analyzed by applying principle p. The book also presents empirical results from a series of experimental studies in which experts (philosophers) and laypeople (engineering students) have been asked to apply the geometric method to fifteen real-world cases. The empirical findings indicate that experts and laypeople do in fact apply geometrically construed moral principles in roughly, but not exactly, the manner advocates of the geometric method believe they ought to be applied.
Philosophers have studied geometry since ancient times. Geometrical knowledge has often played the role of a laboratory for the philosopher's conceptual experiments dedicated to the ideation of powerful theories of knowledge. Lorenzo Magnani's new book Philosophy and Geometry illustrates the rich intrigue of this fascinating story of human knowledge, providing a new analysis of the ideas of many scholars (including Plato, Proclus, Kant, and Poincaré), and discussing conventionalist and neopositivist perspectives and the problem of the origins of geometry. The book also ties together the concerns of philosophers of science and cognitive scientists, showing, for example, the connections between geometrical reasoning and cognition as well as the results of recent logical and computational models of geometrical reasoning. All the topics are dealt with using a novel combination of both historical and contemporary perspectives. Philosophy and Geometry is a valuable contribution to the renaissance of research in the field.
The Geometry of Desert explores the hidden complexity of moral desert. Using graphs to illustrate and contrast alternative views, it carefully investigates the various ways in which the value of an outcome varies when people get (or fail to get) what they deserve.
This work examines the unique way in which Benedict de Spinoza (1632–77) combines two significant philosophical principles: that real existence requires causal power and that geometrical objects display exceptionally clearly how things have properties in virtue of their essences. Valtteri Viljanen argues that underlying Spinoza's psychology and ethics is a compelling metaphysical theory according to which each and every genuine thing is an entity of power endowed with an internal structure akin to that of geometrical objects. This allows Spinoza to offer a theory of existence and of action - human and non-human alike - as dynamic striving that takes place with the same kind of necessity and intelligibility that pertain to geometry. Viljanen's fresh and original study will interest a wide range of readers in Spinoza studies and early modern philosophy more generally.
The passions have long been condemned as a creator of disturbance and purveyor of the temporary loss of reason, but as Remo Bodei argues in Geometry of the Passions, we must abandon the perception that order and disorder are in a constant state of collision. By means of a theoretical and historical analysis, Bodei interprets the relationship between passion and reason as a conflict between two complementary logics. Geometry of the Passions investigates the paradoxical conflict-collaboration between passions and reason, and between individual and political projects. Tracing the roles passion and reason have played throughout history, including in the political agendas of Descartes, Hobbes, and the French Jacobins, Geometry of the Passions reveals how passion and reason may be used as a vehicle for affirmation rather than self-enslavement.
This book reconstructs, from both historical and theoretical points of view, Leibniz’s geometrical studies, focusing in particular on the research Leibniz carried out in his final years. The work’s main purpose is to offer a better understanding of the philosophy of space and in general of the mature Leibnizean metaphysics. This is the first ever, comprehensive historical reconstruction of Leibniz’s geometry.
This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.
The present volume provides a fascinating overview of geometrical ideas and perceptions from the earliest cultures to the mathematical and artistic concepts of the 20th century. It is the English translation of the 3rd edition of the well-received German book “5000 Jahre Geometrie,” in which geometry is presented as a chain of developments in cultural history and their interaction with architecture, the visual arts, philosophy, science and engineering. Geometry originated in the ancient cultures along the Indus and Nile Rivers and in Mesopotamia, experiencing its first “Golden Age” in Ancient Greece. Inspired by the Greek mathematics, a new germ of geometry blossomed in the Islamic civilizations. Through the Oriental influence on Spain, this knowledge later spread to Western Europe. Here, as part of the medieval Quadrivium, the understanding of geometry was deepened, leading to a revival during the Renaissance. Together with parallel achievements in India, China, Japan and the ancient American cultures, the European approaches formed the ideas and branches of geometry we know in the modern age: coordinate methods, analytical geometry, descriptive and projective geometry in the 17th an 18th centuries, axiom systems, geometry as a theory with multiple structures and geometry in computer sciences in the 19th and 20th centuries. Each chapter of the book starts with a table of key historical and cultural dates and ends with a summary of essential contents of geometr y in the respective era. Compelling examples invite the reader to further explore the problems of geometry in ancient and modern times. The book will appeal to mathematicians interested in Geometry and to all readers with an interest in cultural history. From letters to the authors for the German language edition I hope it gets a translation, as there is no comparable work. Prof. J. Grattan-Guinness (Middlesex University London) "Five Thousand Years of Geometry" - I think it is the most handsome book I have ever seen from Springer and the inclusion of so many color plates really improves its appearance dramatically! Prof. J.W. Dauben (City University of New York) An excellent book in every respect. The authors have successfully combined the history of geometry with the general development of culture and history. ... The graphic design is also excellent. Prof. Z. Nádenik (Czech Technical University in Prague)