Download Free The Equations Of Materials Book in PDF and EPUB Free Download. You can read online The Equations Of Materials and write the review.

This primer describes important equations of materials and the scientists who derived them. It provides an excellent introduction to the subject by making the material accessible and enjoyable. The book is dedicated to a number of propositions: 1. The most important equations are often simple and easily explained; 2. The most important equations are often experimental, confirmed time and again; 3. The most important equations have been derived by remarkable scientists who lived interesting lives. Each chapter covers a single equation and materials subject, and is structured in three sections: first, a description of the equation itself; second, a short biography of the scientist after whom it is named; and third, a discussion of some of the ramifications and applications of the equation. The biographical sections intertwine the personal and professional life of the scientist with contemporary political and scientific developments. Topics included are: Bravais lattices and crystals; Bragg's law and diffraction; the Gibbs phase rule and phases; Boltzmann's equation and thermodynamics; the Arrhenius equation and reactions; the Gibbs-Thomson equation and surfaces; Fick's laws and diffusion; the Scheil equation and solidification; the Avrami equation and phase transformations; Hooke's law and elasticity; the Burgers vector and plasticity; Griffith's equation and fracture; and the Fermi level and electrical properties. The book is written for students interested in the manufacture, structure, properties and engineering application of materials such as metals, polymers, ceramics, semiconductors and composites. It requires only a working knowledge of school maths, mainly algebra and simple calculus.
This primer describes important equations of materials and the scientists who derived them. It provides an excellent introduction to the subject by making the material accessible and enjoyable. The book is dedicated to a number of propositions: 1. The most important equations are often simple and easily explained; 2. The most important equations are often experimental, confirmed time and again; 3. The most important equations have been derived by remarkable scientists who lived interesting lives. Each chapter covers a single equation and materials subject, and is structured in three sections: first, a description of the equation itself; second, a short biography of the scientist after whom it is named; and third, a discussion of some of the ramifications and applications of the equation. The biographical sections intertwine the personal and professional life of the scientist with contemporary political and scientific developments. Topics included are: Bravais lattices and crystals; Bragg's law and diffraction; the Gibbs phase rule and phases; Boltzmann's equation and thermodynamics; the Arrhenius equation and reactions; the Gibbs-Thomson equation and surfaces; Fick's laws and diffusion; the Scheil equation and solidification; the Avrami equation and phase transformations; Hooke's law and elasticity; the Burgers vector and plasticity; Griffith's equation and fracture; and the Fermi level and electrical properties. The book is written for students interested in the manufacture, structure, properties and engineering application of materials such as metals, polymers, ceramics, semiconductors and composites. It requires only a working knowledge of school maths, mainly algebra and simple calculus.
This book describes some of the important equations of materials and the scientists who derived them. The text is readable and enjoyable, and is aimed at anyone interested in the manufacture, structure, properties and engineering application of materials such as metals, polymers, ceramics, semiconductors and composites.
Constitutive Equations for Engineering Materials, Volume 1: Elasticity and Modeling, Revised Edition focuses on theories on elasticity and plasticity of engineering materials. The book first discusses vectors and tensors. Coordinate systems, vector algebra, scalar products, vector products, transformation of coordinates, indicial notation and summation convention, and triple products are then discussed. The text also ponders on analysis of stress and strain and presents numerical analysis. The book then discusses elastic stress-strain relations. Basic assumptions; need for elastic models; isotropic linear stress-strain relations; principle of virtual work; strain energy and complementary energy density in elastic solids; and incremental relations grounded on secant moduli are described. The text also explains linear elasticity and failure criteria for concrete and non-linear elasticity and hypoelastic models for concrete. The selection further tackles soil elasticity and failure criteria. Mechanical behavior of soils; failure criteria of soils; and incremental stress-strain models based on modification of the isotropic linear elastic formulation are considered. The text is a good source of data for readers interested in studying the elasticity and plasticity of engineering materials.
Equations are the lifeblood of mathematics, science, and technology, and this book examines equations of all kinds. With his masterful ability to convey the excitement and elegance of mathematics, author Boris Pritsker explores equations from the simplest to the most complex—their history, their charm, and their usefulness in solving problems. The Equations World bridges the fields of algebra, geometry, number theory, and trigonometry, solving more than 280 problems by employing a wide spectrum of techniques. The author demystifies the subject with efficient hints, tricks, and methods that reveal the fun and satisfaction of problem solving. He also demonstrates how equations can serve as important tools for expressing a problem's data, showing the ways in which they assist in fitting parts together to solve the whole puzzle. In addition, brief historical tours reveal the foundations of mathematical thought by tracing the ideas and approaches developed by mathematicians over the centuries. Both recreational mathematicians and ambitious students will find this book an ample source of enlightenment and enjoyment.
Addresses fundamentals and advanced topics relevant to the behavior of materials under in-service conditions such as impact, shock, stress and high-strain rate deformations. Deals extensively with materials from a microstructure perspective which is the future direction of research today.
This tract is based on lecture notes for a course in mechanics that has been offered at Rensselaer Polytechnic Institute on and off for the past twenty years. The course is intended to provide graduate students in mechanics with an understanding of electromagnetism and prepare them for studies on the interaction of the electric and magnetic fields with deformable solid continua. As such, it is imperative that the distinction between particle and continuum descriptions of matter be carefully made and that the distinction between that which is inherently linear and that which is intrinsically nonlinear be clearly delineated. Every possible effort has been made on my part to achieve these ends. I wish to acknowledge the contributions of a number of students and faculty who attended the lectures over the years and who, by their questions and suggestions, significantly improved some of the sections. This preface would not be complete if I did not point out that my interest in electromagnetism was initiated and my attitude towards the development of the equations was influenced by lectures given by the late Professor R.D. Mindlin at Columbia University in the late nineteen fifties. I would like to thank Professor C. Truesdell for his helpful suggestions, which I feel significantly improved the clarity and readability of the Introduction, and Dr. M.G. Ancona for his comment concerning the clarity of an important point in Sec. 1.1.
Materials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The book integrates advanced concepts with foundational knowledge and cutting-edge computational approaches, demonstrating how diffusion, morphological evolution, viscosity, relaxation and other kinetic phenomena can be applied to practical materials design problems across all classes of materials. The book starts with an overview of thermodynamics, discussing equilibrium, entropy, and irreversible processes. Subsequent chapters focus on analytical and numerical solutions of the diffusion equation, covering Fick’s laws, multicomponent diffusion, numerical solutions, atomic models, and diffusion in crystals, polymers, glasses, and polycrystalline materials. Dislocation and interfacial motion, kinetics of phase separation, viscosity, and advanced nucleation theories are examined next, followed by detailed analyses of glass transition and relaxation behavior. The book concludes with a series of chapters covering molecular dynamics, energy landscapes, broken ergodicity, chemical reaction kinetics, thermal and electrical conductivities, Monte Carlo simulation techniques, and master equations. Covers the full breadth of materials kinetics, including organic and inorganic materials, solids and liquids, theory and experiments, macroscopic and microscopic interpretations, and analytical and computational approaches Demonstrates how diffusion, viscosity microstructural evolution, relaxation, and other kinetic phenomena can be leveraged in the practical design of new materials Provides a seamless connection between thermodynamics and kinetics Includes practical exercises that reinforce key concepts at the end of each chapter