Download Free The Emission Inventory Book in PDF and EPUB Free Download. You can read online The Emission Inventory and write the review.

Very Good,No Highlights or Markup,all pages are intact.
Global climate change is a natural process that currently appears to be strongly influenced by human activities, which increase atmospheric concentrations of greenhouse gases (GHG). Agriculture contributes about 20% of the world's global radiation forcing from carbon dioxide, methane and nitrous oxide, and produces 50% of the methane and 70% of the nitrous oxide of the human-induced emission. Managing Agricultural Greenhouse Gases synthesizes the wealth of information generated from the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) effort with contributors from a variety of backgrounds, and reports findings with important international applications. - Frames responses to challenges associated with climate change within the geographical domain of the U.S., while providing a useful model for researchers in the many parts of the world that possess similar ecoregions - Covers not only soil C dynamics but also nitrous oxide and methane flux, filling a void in the existing literature - Educates scientists and technical service providers conducting greenhouse gas research, industry, and regulators in their agricultural research by addressing the issues of GHG emissions and ways to reduce these emissions - Synthesizes the data from top experts in the world into clear recommendations and expectations for improvements in the agricultural management of global warming potential as an aggregate of GHG emissions
Currently, one of the most evident and dangerous contaminants aspects for the health of all living beings is air pollution. To understand the severity of this environmental problem, in this book the authors make an in-depth review of different environmental aspects on monitoring, quantification and elimination of emissions to the atmosphere, generated by diverse anthropogenic activities in large cities. Contributors of this book have made an effort to put their ideas in simple terms without forgoing quality. The principal objective of this book is to present the most recent technical literature to all interested readers in this field.
The world's nations are moving toward agreements that will bind us together in an effort to limit future greenhouse gas emissions. With such agreements will come the need for all nations to make accurate estimates of greenhouse gas emissions and to monitor changes over time. In this context, the present book focuses on the greenhouse gases that result from human activities, have long lifetimes in the atmosphere and thus will change global climate for decades to millennia or more, and are currently included in international agreements. The book devotes considerably more space to CO2 than to the other gases because CO2 is the largest single contributor to global climate change and is thus the focus of many mitigation efforts. Only data in the public domain were considered because public access and transparency are necessary to build trust in a climate treaty. The book concludes that each country could estimate fossil-fuel CO2 emissions accurately enough to support monitoring of a climate treaty. However, current methods are not sufficiently accurate to check these self-reported estimates against independent data or to estimate other greenhouse gas emissions. Strategic investments would, within 5 years, improve reporting of emissions by countries and yield a useful capability for independent verification of greenhouse gas emissions reported by countries.
Understanding, quantifying, and tracking atmospheric methane and emissions is essential for addressing concerns and informing decisions that affect the climate, economy, and human health and safety. Atmospheric methane is a potent greenhouse gas (GHG) that contributes to global warming. While carbon dioxide is by far the dominant cause of the rise in global average temperatures, methane also plays a significant role because it absorbs more energy per unit mass than carbon dioxide does, giving it a disproportionately large effect on global radiative forcing. In addition to contributing to climate change, methane also affects human health as a precursor to ozone pollution in the lower atmosphere. Improving Characterization of Anthropogenic Methane Emissions in the United States summarizes the current state of understanding of methane emissions sources and the measurement approaches and evaluates opportunities for methodological and inventory development improvements. This report will inform future research agendas of various U.S. agencies, including NOAA, the EPA, the DOE, NASA, the U.S. Department of Agriculture (USDA), and the National Science Foundation (NSF).
Leading air quality professionals describe different aspects of air pollution. The book presents information on four broad areas of interest in the air pollution field; the air pollution monitoring; air quality modeling; the GIS techniques to manage air quality; the new approaches to manage air quality. This book fulfills the need on the latest concepts of air pollution science and provides comprehensive information on all relevant components relating to air pollution issues in urban areas and industries. The book is suitable for a variety of scientists who wish to follow application of the theory in practice in air pollution. Known for its broad case studies, the book emphasizes an insightful of the connection between sources and control of air pollution, rather than being a simple manual on the subject.
Emission inventory (EI) is a comprehensive listing of pollutants from all sources in a geo-graphical area during a period of time. The development of EI database is very important to air quality management and helps us to find out main sources. In general, to develop a reliable EI for one specific area, the following steps are involved: (i) list the types of sources, (ii) determine the types of air pollutant emission from each of the listed sources, (iii) find out the emission factor (EF) for each of the concerned pollutants, (iv) determine the number and size of specific sources in the area, and (v) multiply the appropriate numbers from step (iii) and (iv) to obtain the total emissions and then sum up the similar emissions to obtain the total for the area. With emission inventory, we can define the main sources in the study area and have the best solution for clean air action. Besides, the result from EIs can be used to study in other sectors related to human health, economic loss from air pollution, etc. This chapter will describe the method for development of an air emission inventory for developing and developed countries.