Download Free The Einstein Myth And The Ives Papers Book in PDF and EPUB Free Download. You can read online The Einstein Myth And The Ives Papers and write the review.

The scientific career of John Stewart Bell was distinguished by its breadth and its quality. He made several very important contributions to scientific fields as diverse as accelerator physics, high energy physics and the foundations of quantum mechanics.This book contains a large part of J S Bell's publications, including those that are recognized as his most important achievements, as well as others that are for no good reason less well known. The selection was made by Mary Bell, Martinus Veltman and Kurt Gottfried, all of whom were involved with John Bell both personally and professionally throughout a large part of his life. An introductory chapter has been written to help place the selected papers in a historical context and to review their significance.This book comprises an impressive collection of outstanding scientific work of one of the greatest scientists of the recent past, and it will remain important and influential for a long time to come.
This book is the most complete collection of John S Bell's research papers, review articles and lecture notes on the foundations of quantum mechanics. Some of this material has hitherto been difficult to access. The book also appears in a paperback edition, aimed at students and young researchers.This volume will be very useful to researchers in the foundations and applications of quantum mechanics.
Self-organization of matter is observed in every context and on all scales, from the nanoscale of quantum fields and subatomic particles to the macroscale of galaxy superclusters. This book analyzes the wide range of patterns of organization present in nature, highlighting their similarities rather than their differences. This unconventional approach results in an illuminating read which should be part of any Physics student's background.
Newton's Laws held for 300 years until Einstein developed the 'special theory of relativity' in 1905. Experiments done since then show anomalies in that theory. This book starts with a description of the special theory of relativity. It is shown that Einstein was not the first to derive the famous equation E = mc2, which has become synonymous with his name. Next, experimental evidence that cannot be explained by special relativity is given. In the light of this evidence, the two basic postulates of the special theory of relativity on the behaviour of light are shown to be untenable. A new theory (universal relativity) is developed, which conforms to the experimental evidence. The movement of a conductor near a pole of a magnet and the movement of that pole near the conductor does not always give the same result. It has been claimed that this contradicts relativity theory. Experiments described in this book show that it is not special relativity but another basic law of physics that is contradicted - Faraday's Law. The Big Bang theory of the beginning of the universe is questioned and an alternative proposed. The source of much of the mysterious missing 'dark matter' that has been sought for decades by astronomers is located. An explanation of the shapes of some galaxies is proffered. This book presents an alternative to Einstein's special theory of relativity, solves many problems left unanswered by special relativity, gives a better fit to many phenomena and experimental data and is more philosophically appealing. It is recommended to all people interested in fundamental issues of physics and cosmology. Professor Andre Assis, Brazil The book treats its subject properly, not just as an impersonal set of equations, but rather as a developing saga full of human triumph and failure. One learns from both experimental results and simple logical argument that all is not well with modern physics. Dr. Neal Graneau, Oxford University, U.K. Irish engineer solves the dark secrets of space. Sunday Times, U.K. Einstein got relativity theory wrong. Bangkok Post, Thailand
Provides compelling evidence that creation myths from the dawn of civilization correspond to cutting edge astronomical discoveries • Exposes the contradictions in current cosmological theory and offers a scientific basis for the ancient myths and esoteric lore that encode a theory of continuous creation • By the scientist who was the first to disprove the Big Bang theory on the basis of observational data Recent developments in theoretical physics, including systems theory and chaos theory, are challenging long-held mechanistic views of the universe. Many thinkers have speculated that the remnants of an ancient science survive today in mythology and esoteric lore, but until now the scientific basis for this belief has remained cloaked in mystery. Paul LaViolette reveals the remarkable parallels between the cutting edge of scientific thought and creation myths from the dawn of civilization. With a scientific sophistication rare among mythologists, LaViolette deciphers the forgotten cosmology of ancient lore in a groundbreaking scientific tour de force. In direct, nontechnical language, he shows how these myths encode a theory of cosmology in which matter is continually growing from seeds of order that emerge spontaneously from the surrounding subquantum chaos. Exposing the contradictions that bedevil the big bang theory, LaViolette offers both the specialist and the general reader a controversial and highly stimulating critique of prevailing misconceptions about the seldom-questioned superiority of modern science over ancient cosmology. By restoring and reanimating this ancient scientific worldview, Genesis of the Cosmos leads us beyond the restrictive metaphors of modern science and into a new science for the 21st century.
The Olympia conference Frontiers of Fundamental Physics was a gathering of about hundred scientists who carryon their research in conceptually important areas of physical science (they do "fundamental physics"). Most of them were physicists, but also historians and philosophers of science were well represented. An important fraction of the participants could be considered "heretical" because they disagreed with the validity of one or several fundamental assumptions of modern physics. Common to all participants was an excellent scientific level coupled with a remarkable intellectual honesty: we are proud to present to the readers this certainly unique book. Alternative ways of considering fundamental matters should of course be vitally important for the progress of science, unless one wanted to admit that physics at the end of the XXth century has already obtained the final truth, a very unlikely possibility even if one accepted the doubtful idea of the existence of a "final" truth. The merits of the Olympia conference should therefore not be judged a priori in a positive or in a negative way depending on one's refusal or acceptance, respectively, but considered after reading the actual of basic principles of contemporary science, new proposals and evidences there presented. They seem very important to us.
Max Jammer's Concepts of Simultaneity presents a comprehensive, accessible account of the historical development of an important and controversial concept—which played a critical role in initiating modern theoretical physics—from the days of Egyptian hieroglyphs through to Einstein's work in 1905, and beyond. Beginning with the use of the concept of simultaneity in ancient Egypt and in the Bible, the study discusses its role in Greek and medieval philosophy as well as its significance in Newtonian physics and in the ideas of Leibniz, Kant, and other classical philosophers. The central theme of Jammer's presentation is a critical analysis of the use of this concept by philosophers of science, like Poincaré, and its significant role in inaugurating modern theoretical physics in Einstein's special theory of relativity. Particular attention is paid to the philosophical problem of whether the notion of distant simultaneity presents a factual reality or only a hypothetical convention. The study concludes with an analysis of simultaneity's importance in general relativity and quantum mechanics.
This book is aimed at a large audience: scientists, engineers, professors and students wise enough to keep a critical stance whenever confronted with the chilling dogmas of contemporary physics. Readers will find a tantalizing amount of material calculated to nurture their thoughts and arouse their suspicion, to some degree at least, on the so-called validity of today's most celebrated physical theories.