Download Free The Effects Of Radiation On Electronic Systems Book in PDF and EPUB Free Download. You can read online The Effects Of Radiation On Electronic Systems and write the review.

Ionizing Radiation Effects in Electronics: From Memories to Imagers delivers comprehensive coverage of the effects of ionizing radiation on state-of-the-art semiconductor devices. The book also offers valuable insight into modern radiation-hardening techniques. The text begins by providing important background information on radiation effects, their underlying mechanisms, and the use of Monte Carlo techniques to simulate radiation transport and the effects of radiation on electronics. The book then: Explains the effects of radiation on digital commercial devices, including microprocessors and volatile and nonvolatile memories—static random-access memories (SRAMs), dynamic random-access memories (DRAMs), and Flash memories Examines issues like soft errors, total dose, and displacement damage, together with hardening-by-design solutions for digital circuits, field-programmable gate arrays (FPGAs), and mixed-analog circuits Explores the effects of radiation on fiber optics and imager devices such as complementary metal-oxide-semiconductor (CMOS) sensors and charge-coupled devices (CCDs) Featuring real-world examples, case studies, extensive references, and contributions from leading experts in industry and academia, Ionizing Radiation Effects in Electronics: From Memories to Imagers is suitable both for newcomers who want to become familiar with radiation effects and for radiation experts who are looking for more advanced material or to make effective use of beam time.
This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes the background material necessary for understanding radiation effects at a more general level.
The first comprehensive overview describing the effects of ionizing radiation on MOS devices, as well as how to design, fabricate, and test integrated circuits intended for use in a radiation environment. Also addresses process-induced radiation effects in the fabrication of high-density circuits. Reviews the history of radiation-hard technology, providing background information for those new to the field. Includes a comprehensive review of the literature and an annotated listing of research activities in radiation-hardness research.
This volume provides an extensive overview of radiation effects on integrated circuits, offering major guidelines for coping with radiation effects on components. It contains a set of chapters based on the tutorials presented at the International School on Effects of Radiation on Embedded Systems for Space Applications (SERESSA) that was held in Manaus, Brazil, November 20-25, 2005.
New edition of this practical and educational handbook for engineer-designers and other professionals. It describes the electronic technology of the new millennium and the complex physical and engineering problems that occur when such equipment is exposed to radiation. The authors have an accumulated joint combined experience in the field of about 75 years, giving a broader blend of experience than any existing book in the field.
Spacecraft depend on electronic components that must perform reliably over missions measured in years and decades. Space radiation is a primary source of degradation, reliability issues, and potentially failure for these electronic components. Although simulation and modeling are valuable for understanding the radiation risk to microelectronics, there is no substitute for testing, and an increased use of commercial-off-the- shelf parts in spacecraft may actually increase requirements for testing, as opposed to simulation and modeling. Testing at the Speed of Light evaluates the nation's current capabilities and future needs for testing the effects of space radiation on microelectronics to ensure mission success and makes recommendations on how to provide effective stewardship of the necessary radiation test infrastructure for the foreseeable future.
This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.