Download Free The Effects Of Inlet Water Temperature On Condensing Film Coefficients Book in PDF and EPUB Free Download. You can read online The Effects Of Inlet Water Temperature On Condensing Film Coefficients and write the review.

"This experiment investigated the effects of the inlet water temperature on the overall condensing heat transfer coefficient in a surface condenser. The results of the testing during the investigation were used to determine a temperature correction factor which was then compared to the correlation published by the Heat Exchange Institute ' . The comparison revealed that the correlation published by the Heat Exchange Institute is not accurate for inlet water temperature less than 65 F and greater than 75 F. In addition, a comparison was made between the overall heat transfer coefficient that was obtained by experiment and the overall heat transfer coefficient as calculated by the additive resistance method using the Petukhov-Popov correlation for the water side coefficient and the Nusselt single tube correlation for the steam side coefficient. From this comparison it was determined that the additive resistance method using the Petukhov-Popov correlation for the water side coefficient and the single tube Nusselt correlation predicts the overall heat transfer coefficient for 7/8 inch tubes on a 1.125 inch pitch within 6% of the experimental value over a cooling water inlet temperature rangeof55F to 80F."--Abstract.
This book provides a solid foundation in the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The revised second edition incorporates state-of-the-art findings on heat and mass transfer correlations. The book will be useful not only to upper- and graduate-level students, but also to practicing scientists and engineers. Many worked-out examples and numerous exercises with their solutions will facilitate learning and understanding, and an appendix includes data on key properties of important substances.
to increase the use of direct contact processes, the National Science Foundation sup ported a workshop on direct contact heat transfer at the Solar Energy Research Insti tute in the summer of 1985. We served as organizers for this workshop, which em phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten tial that could be realized if the information to be obtained through the proposed research activities were available.
I welcome the opportunity to have my book translated, because of the great emphasis on two-phase flow and heat transfer in the English-speaking world, as related to research, university education, and industrial practice. The 1988 Springer-Verlag edition of "Warmeiibergang beim Kondensieren und beim Sieden" has been enlarged to include additional material on falling film evaporation (Chapter 12) and pressure drop in two-phase flow (Chapter 13). Minor errors in the original text have also been corrected. I would like to express my sincere appreciation to Professor Green, Asso ciate Professor of German at Rensselaer, for his excellent translation and co operation. My thanks go also to Professor Bergles for his close attention to technical and linguistic details. He carefully read the typescript and made many comments and suggestions that helped to improve the manuscript. I hope that the English edition will meet with' a favorable reception and contribute to better understanding and to progress in the field of heat transfer in condensation and boiling. February 1992 K. Stephan Preface to the German-Language Edition This book is a continuation of the series "Heat and Mass Transfer" edited by U. Grigull, in which three volumes have already been published. Its aim is to acquaint students and practicing engineers with heat transfer during condensa tion and boiling, and is intended primarily for students and engineers in mechanical, chemical, electrical, and industrial processing engineering.
For more than 50 years, the Springer VDI Heat Atlas has been an indispensable working means for engineers dealing with questions of heat transfer. Featuring 50% more content, this new edition covers most fields of heat transfer in industrial and engineering applications. It presents the interrelationships between basic scientific methods, experimental techniques, model-based analysis and their transfer to technical applications.
Since the petroleum crisis in the 1970s, a lot of effort to save energy was made in industry, and remarkable achievements have been made. In the research and development concerning thermal energy, however, it was clar ified that one of the most important problems was manufacturing con densing systems with smaller size and higher performance. To solve this problem we need a method which synthesizes selections_ of the type of con denser, cooling tube and its arrangement, assessment of fouling on the cooling surfaces, consideration of transient characteristics of a condenser, etc. The majority of effort, however, has been to devise a surface element which enhances the heat transfer coefficient in condensation of a single or multicomponent vapor. Condensation phenomena are complexly affected by a lot of physical property values, and accordingly the results of theo retical research are expressed with several dimensionless parameters. On the other hand, the experimental research is limited to those with some specified cooling surfaces and some specified working fluids. Hence, the basic research of condensation is necessary for criticizing the enhancement effect as well as for an academic interest.