Download Free The Effects Of Grading And Type Of Compaction On The Shear Properties Of Cohesionless Soils As Determined By The Tri Axial Compression Test Book in PDF and EPUB Free Download. You can read online The Effects Of Grading And Type Of Compaction On The Shear Properties Of Cohesionless Soils As Determined By The Tri Axial Compression Test and write the review.

Several physical methods are described for the practical measurement and rating of angularity (shape) of cohesionless soil particles. Angularity is determined by utilizing the fundamental property of a sphere: a sphere has the smallest contact surface area of any shape for a given volume. Therefore, any other shape will exhibit a greater contact surface area and consequently will have a greater frictional resistance which is a function of its degree of angularity. The effects of angularity on the physical behavior (e.g. strength) of cohesionless soils was investigated at various relative compaction densities. For this purpose a combined compaction and direct shear test device constructed from a modified standard Proctor compaction mold was devised. The samples used to determine the effect of particle shape on the physical behavior of cohesionless materials were produced in the lab from pure quartz. This was done in order to avoid the problem of variations due to mineral composition and grain size distributions. It was hoped that this would insure a greater uniformity of test results. In addition, the shear test results derived from lab-produced quartz samples were compared to those of natural field samples in order to determine whether the behavior observed during lab tests was representative of natural field soils. These experiments demonstrated that the strength of a cohesionless material increases with degree of angularity and relative density to an optimum point. Surpassing the optimum value implies substantial particle crushing which reduces the particle interlocking effect and can result in a reduction of soil strength. Crushing is greatest when cohesionless particles are poorly graded, highly angular, and large in size. Generally, the degree of particle crushing influences strength, and particle shape determines the degree of crushing. Shape (angularity), therefore, significantly controls the overall strength of a cohesionless soil.
Drained triaxial compression tests of Toyoura sand were carried out with conventional triaxial apparatus to evaluate the effects of sample slenderness and end conditions on triaxial compression strength. It was found that the maximum difference in the angle of internal friction ?d for different test conditions employed was about ±1°. At the same time, the effects of the sample slenderness and each end condition on the strength value could be clearly identified.
One-volume library of instant geotechnical and foundation data Now for the first time ever, geotechnical, foundation, and civil engineers...geologists...architects, planners, and construction managers can quickly find information they must refer to every working day, in one compact source. Edited by Robert W. Day, the time -and effort-saving Geotechnical Engineer's Portable Handbook gives you field exploration guidelines and lab procedures. You'll find soil and rock classification, basic phase relationships, and all the tables and charts you need for stress distribution, pavement, and pipeline design. You also get abundant information on all types of geotechnical analyses, including settlement, bearing capacity, expansive soil, slope stability - plus coverage of retaining walls and building foundations. Other construction-related topics covered include grading, instrumentation, excavation, underpinning, groundwater control and more.