Download Free The Economic Impact Of Agricultural Research Book in PDF and EPUB Free Download. You can read online The Economic Impact Of Agricultural Research and write the review.

Interestingly, some relief from today's woes may come from ancient human practices. While current agri-food production models rely on abundant supplies of water, energy, and arable land and generate significant greenhouse gas emissions in addition to forest and biodiversity loss, past practices point toward more affordable and sustainable paths. Different forms of insect farming and soilless crop farming, or hydroponics, have existed for centuries. In this report the authors make a persuasive case that frontier agriculture, particularly insect and hydroponic farming, can complement conventional agriculture. Both technologies reuse society's agricultural and organic industrial waste to produce nutritious food and animal feed without continuing to deplete the planet's land and water resources, thereby converting the world's wasteful linear food economy into a sustainable, circular food economy. As the report shows, insect and hydroponic farming can create jobs, diversify livelihoods, improve nutrition, and provide many other benefits in African and fragile, conflict-affected countries. Together with other investments in climate-smart agriculture, such as trees on farms, alternate wetting and drying rice systems, conservation agriculture, and sustainable livestock, these technologies are part of a promising menu of solutions that can help countries move their land, food, water, and agriculture systems toward greater sustainability and reduced emissions. This is a key consideration as the World Bank renews its commitment to support countries' climate action plans. This book is the Bank's first attempt to look at insect and hydroponic farming as possible solutions to the world's climate and food and nutrition security crisis and may represent a new chapter in the Bank's evolving efforts to help feed and sustain the planet.
Agricultural yields have increased steadily in the last half century, particularly since the Green Revolution. At the same time, inflation-adjusted agricultural commodity prices have been trending downward as increases in supply outpace the growth of demand. Recent severe weather events, biofuel mandates, and a switch toward a more meat-heavy diet in emerging economies have nevertheless boosted commodity prices. Whether this is a temporary jump or the beginning of a longer-term trend is an open question. Agricultural Productivity and Producer Behavior examines the factors contributing to the remarkably steady increase in global yields and assesses whether yield growth can continue. This research also considers whether agricultural productivity growth has been, and will be, associated with significant environmental externalities. Among the topics studied are genetically modified crops; changing climatic factors; farm production responses to government regulations including crop insurance, transport subsidies, and electricity subsidies for groundwater extraction; and the role of specific farm practices such as crop diversification, disease management, and water-saving methods. This research provides new evidence that technological as well as policy choices influence agricultural productivity.
How we produce and consume food has a bigger impact on Americans' well-being than any other human activity. The food industry is the largest sector of our economy; food touches everything from our health to the environment, climate change, economic inequality, and the federal budget. From the earliest developments of agriculture, a major goal has been to attain sufficient foods that provide the energy and the nutrients needed for a healthy, active life. Over time, food production, processing, marketing, and consumption have evolved and become highly complex. The challenges of improving the food system in the 21st century will require systemic approaches that take full account of social, economic, ecological, and evolutionary factors. Policy or business interventions involving a segment of the food system often have consequences beyond the original issue the intervention was meant to address. A Framework for Assessing Effects of the Food System develops an analytical framework for assessing effects associated with the ways in which food is grown, processed, distributed, marketed, retailed, and consumed in the United States. The framework will allow users to recognize effects across the full food system, consider all domains and dimensions of effects, account for systems dynamics and complexities, and choose appropriate methods for analysis. This report provides example applications of the framework based on complex questions that are currently under debate: consumption of a healthy and safe diet, food security, animal welfare, and preserving the environment and its resources. A Framework for Assessing Effects of the Food System describes the U.S. food system and provides a brief history of its evolution into the current system. This report identifies some of the real and potential implications of the current system in terms of its health, environmental, and socioeconomic effects along with a sense for the complexities of the system, potential metrics, and some of the data needs that are required to assess the effects. The overview of the food system and the framework described in this report will be an essential resource for decision makers, researchers, and others to examine the possible impacts of alternative policies or agricultural or food processing practices.
Southeast Asia made considerable progress in building and strengthening its agricultural R&D capacity during 2000–2017. All of the region’s countries reported higher numbers of agricultural researchers, improvements in their average qualification levels, and higher shares of women participating in agricultural R&D. In contrast, regional agricultural research spending remained stagnant, despite considerable growth in agricultural output over time. As a result, Southeast Asia’s agricultural research intensity—that is, agricultural research spending as a share of agricultural GDP—steadily declined from 0.50 percent in 2000 to just 0.33 percent in 2017. Although the extent of underinvestment in agricultural research differs across countries, all Southeast Asian countries invested below the levels deemed attainable based on the analysis summarized in this report. The region will need to increase its agricultural research investment substantially in order to address future agricultural production challenges more effectively and ensure productivity growth. Southeast Asia’s least developed agricultural research systems (Cambodia, Laos, and Myanmar) are characterized by low scientific output and researcher productivity as a direct consequence of severe underfunding and lack of sufficient well-qualified research staff. While Malaysia and Thailand have significantly more developed agricultural research systems, they still report key inefficiencies and resource constraints that require attention. Indonesia, the Philippines, and Vietnam occupy intermediate positions between these two groups of high- and low-performing agricultural research systems. Growing national economies, higher disposable incomes, and changing consumption patterns will prompt considerable shifts in levels of agricultural production, consumption, imports, and exports across Southeast Asia over the next 20 to 30 years. The resource-allocation decisions that governments make today will affect agricultural productivity for decades to come. Governments therefore need to ensure the research they undertake is responsive to future challenges and opportunities, and aligned with strategic development and agricultural sector plans. ASTI’s projections reveal that prioritizing investment in staple crops will still trigger fastest agricultural productivity growth in Laos. However, Indonesia, Malaysia, and Vietnam could achieve faster growth over the next 30 years by prioritizing investment in research focused on fruit, vegetables, livestock, and aquaculture. In Cambodia, Myanmar, and Thailand, the choice between focusing on staple crops versus high-value commodities was less pronounced, but projections did indicate that prioritizing investments in oil crop research would trigger significantly lower growth in agricultural productivity.
This book offers an up-to-date review of our current understanding of climate change in the North Sea and adjacent areas, as well as its impact on ecosystems and socio-economic sectors. It provides a detailed assessment of climate change based on published scientific work compiled by independent international experts from climate-related disciplines such as oceanography, atmospheric sciences, marine and terrestrial ecology, using a regional evaluation and review process similar to that of the Intergovernmental Panel on Climate Change (IPCC). It provides a comprehensive overview of all aspects of our changing climate, discussing a wide range of topics including past, current and future climate change, and climate-related changes in marine, terrestrial and freshwater ecosystems. It also explores the impact of climate change on socio-economic sectors such as fisheries, agriculture, coastal zone management, coastal protection, urban climate, recreation/tourism, offshore activities/energy, and air pollution.
This volume in the 'Distortions to Agricultural Incentives' series focus on distortions to agricultural incentives from a global perspective.
Handbook of Agricultural Economics, Volume Five highlights new advances in the field, with this new release exploring comprehensive chapters written by an international board of authors who discuss topics such as The Economics of Agricultural Innovation, Climate, food and agriculture, Agricultural Labor Markets: Immigration Policy, Minimum Wages, Etc., Risk Management in Agricultural Production, Animal Health and Livestock Disease, Behavioral and Experimental Economics to Inform Agri-Environmental Programs and Policies, Big Data, Machine Learning Methods for Agricultural and Applied Economists, Agricultural data collection to minimize measurement error and maximize coverage, Gender, agriculture and nutrition, Social Networks Analysis In Agricultural Economics, and more. Presents the latest release in the Handbook of Agricultural Economics Written and contributed by leaders in the field Covers topics such as The Economics of Agricultural Innovation, Climate, Food and Agriculture, Agricultural Labor Markets, and more
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
The U.S. Department of Agriculture (USDA) requested that the Board on Agriculture and Natural Resources of the National Research Council (NRC) convene a panel of experts to examine whether publicly funded agricultural research has influenced the structure of U.S. agriculture and, if so, how. The Committee to Review the Role of Publicly Funded Agricultural Research on the Structure of U.S. Agriculture was asked to assess the role of public-sector agricultural research on changes in the size and numbers of farms, with particular emphasis on the evolution of very-large-scale operations.