Download Free The Double Bind In Physics Education Book in PDF and EPUB Free Download. You can read online The Double Bind In Physics Education and write the review.

An incisive study of the mechanisms reinforcing the underrepresentation of women of color in STEM fields and a call for systemic change to address the imbalance. In a detailed exploration of inclusion in physics, social scientist Maria Ong makes the case for far-reaching higher education reform, noting that despite diversity efforts to recruit more women and students of color into science and mathematics programs, many leave the STEM pipeline. The Double Bind in Physics Education takes readers inside the issue by following 10 women of color from their entrance into the undergraduate physics program at a large research university through their pursuit of various educational and career paths. Candid interviews with these women, their instructors and mentors, and their peers, conducted over 25 years, allow Ong to trace how pervasive challenges, such as navigating the intersectionality of race and gender discrimination, have shaped their academic opportunities and career choices. Despite the ideals of objectivity promoted in STEM disciplines, the women profiled here encounter continued patterns of systemic oppression within their departments. In their stories, Ong identifies overt behaviors and microaggressions that harass, exclude, and otherwise disadvantage women of color and members of other minoritized groups. Ong also shows how aids such as student support programs, peer groups, allies, and mentors, which are centered on the individual, can go only so far toward a sustainable solution. In order to provide equitable opportunities, she argues, greater work must be done to dismantle institutional norms and replace them with a culture of inclusion.
This book describes novel approaches designed to enhance the professional training of physics teachers, and explores innovations in the teaching and learning of physics in the classroom and laboratory. It features selected contributions from the International Research Group on Physics Teaching (GIREP) and Multimedia in Physics Teaching and Learning (MPTL) Conference, held in Donostia-San Sebastian, Spain, in July 2018, which brought together two communities: researchers in physics education and physics teachers. The book covers a broad range of topics, highlighting important aspects of the relationship between research and innovation in the teaching of physics, and presenting fresh insights to help improve learning processes and instruction. Offering a contemporary vision of physics teaching and the learning process, the book is of interest to all teachers and researchers committed to teaching and learning physics on the basis of good evidence.
This book offers a comprehensive overview of the theoretical background and practice of physics teaching and learning and assists in the integration of highly interesting topics into physics lessons. Researchers in the field, including experienced educators, discuss basic theories, the methods and some contents of physics teaching and learning, highlighting new and traditional perspectives on physics instruction. A major aim is to explain how physics can be taught and learned effectively and in a manner enjoyable for both the teacher and the student. Close attention is paid to aspects such as teacher competences and requirements, lesson structure, and the use of experiments in physics lessons. The roles of mathematical and physical modeling, multiple representations, instructional explanations, and digital media in physics teaching are all examined. Quantitative and qualitative research on science education in schools is discussed, as quality assessment of physics instruction. The book is of great value to researchers involved in the teaching and learning of physics, to those training physics teachers, and to pre-service and practising physics teachers.
The Handbook of Research on STEM Education represents a groundbreaking and comprehensive synthesis of research and presentation of policy within the realm of science, technology, engineering, and mathematics (STEM) education. What distinguishes this Handbook from others is the nature of integration of the disciplines that is the founding premise for the work – all chapters in this book speak directly to the integration of STEM, rather than discussion of research within the individual content areas. The Handbook of Research on STEM Education explores the most pressing areas of STEM within an international context. Divided into six sections, the authors cover topics including: the nature of STEM, STEM learning, STEM pedagogy, curriculum and assessment, critical issues in STEM, STEM teacher education, and STEM policy and reform. The Handbook utilizes the lens of equity and access by focusing on STEM literacy, early childhood STEM, learners with disabilities, informal STEM, socio-scientific issues, race-related factors, gender equity, cultural-relevancy, and parental involvement. Additionally, discussion of STEM education policy in a variety of countries is included, as well as a focus on engaging business/industry and teachers in advocacy for STEM education. The Handbook’s 37 chapters provide a deep and meaningful landscape of the implementation of STEM over the past two decades. As such, the findings that are presented within provide the reader with clear directions for future research into effective practice and supports for integrated STEM, which are grounded in the literature to date.
Adapting to a Changing World was commissioned by the National Science Foundation to examine the present status of undergraduate physics education, including the state of physics education research, and, most importantly, to develop a series of recommendations for improving physics education that draws from the knowledge we have about learning and effective teaching. Our committee has endeavored to do so, with great interest and more than a little passion. The Committee on Undergraduate Physics Education Research and Implementation was established in 2010 by the Board on Physics and Astronomy of the National Research Council. This report summarizes the committee's response to its statement of task, which requires the committee to produce a report that identifies the goals and challenges facing undergraduate physics education and identifies how best practices for undergraduate physics education can be implemented on a widespread and sustained basis, assess the status of physics education research (PER) and discuss how PER can assist in accomplishing the goal of improving undergraduate physics education best practices and education policy.
This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementation of representations should consider design principles for using multiple representations. Investigations regarding their effect on classroom communication as well as on the learning results in all levels of schooling and for different topics of physics are reported. The book is intended for physics educators and their students at universities and for physics teachers in schools to apply multiple representations in physics in a productive way.
Physics Education research is a young field with a strong tradition in many countries. However, it has only recently received full recognition of its specificity and relevance for the growth and improvement of the culture of Physics in contemporary Society for different levels and populations. This may be due on one side to the fact that teaching, therefore education, is part of the job of university researchers and it has often been implicitly assumed that the competences required for good research activity also guarantee good teaching practice. On the other side, and perhaps more important, is the fact that the problems to be afforded in doing research in education are complex problems that require a knowledge base not restricted to the disciplinary physics knowledge but enlarged to include cognitive science, communication science, history and philosophy. The topics discussed here look at some of the facets of the problem by considering the interplay of the development of cognitive models for learning Physics with some reflections on the Physics contents for contemporary and future society with the analysis of teaching strategies and the role of experiments the issue of assessmen"
This book on the teaching and learning of physics is intended for college-level instructors, but high school instructors might also find it very useful.Some ideas found in this book might be a small 'tweak' to existing practices whereas others require more substantial revisions to instruction. The discussions of student learning herein are based on research evidence accumulated over decades from various fields, including cognitive psychology, educational psychology, the learning sciences, and discipline-based education research including physics education research. Likewise, the teaching suggestions are also based on research findings. As for any other scientific endeavor, physics education research is an empirical field where experiments are performed, data are analyzed and conclusions drawn. Evidence from such research is then used to inform physics teaching and learning.While the focus here is on introductory physics taken by most students when they are enrolled, however, the ideas can also be used to improve teaching and learning in both upper-division undergraduate physics courses, as well as graduate-level courses. Whether you are new to teaching physics or a seasoned veteran, various ideas and strategies presented in the book will be suitable for active consideration.
Though there has been a rapid increase of women’s representation in law and business, their representation in STEM fields has not been matched. Researchers have revealed that there are several environmental and social barriers including stereotypes, gender bias, and the climate of science and engineering departments in colleges and universities that continue to block women’s progress in STEM. In this book, the authors address the issues that encounter women of color in STEM in higher education.
This book discusses novel research on and practices in the field of physics teaching and learning. It gathers selected high-quality studies that were presented at the GIREP-ICPE-EPEC 2017 conference, which was jointly organised by the International Research Group on Physics Teaching (GIREP); European Physical Society – Physics Education Division, and the Physics Education Commission of the International Union of Pure and Applied Physics (IUPAP). The respective chapters address a wide variety of topics and approaches, pursued in various contexts and settings, all of which represent valuable contributions to the field of physics education research. Examples include the design of curricula and strategies to develop student competencies—including knowledge, skills, attitudes and values; workshop approaches to teacher education; and pedagogical strategies used to engage and motivate students. This book shares essential insights into current research on physics education and will be of interest to physics teachers, teacher educators and physics education researchers around the world who are working to combine research and practice in physics teaching and learning.